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PREFACE. 

The usual point of view in the study of mechanics is that 

where the attention is mainly directed to the changes which 

take place in the course of time in a given system. The prin¬ 

cipal problem is the determination of the condition of the 

system with respect to configuration and velocities at any 

required time, when its condition in these respects has been 

given for some one time, and the fundamental equations are 

those which express the changes continually taking place in 

the system. Inquiries of this kind are often simplified by 

taking into consideration conditions of the system other than 

those through which it actually passes or is supposed to pass, 

but our attention is not usually carried beyond conditions 

differing infinitesimally from those wliich are regarded as 

actual. 

For some purposes, however, it is desirable to take a broader 

view of the subject. We may imagine a great number of 

systems of the same nature, but differing in the configura¬ 

tions and velocities which they have at a given instant, and 

differing not merely infinitesimally, but it may be so as to 

embrace every conceivable combination of configuration and 

velocities. And here we may set the problem, not to follow 

a particular system through its succession of configurations, 

but to determine how the whole number of systems will be 

distributed among the various conceivable configurations and 

velocities at any required time, when the distribution has 

been given for some one time. The fundamental equation 

for this inquiry is that which gives the rate of change of the 

number of systems which fall within any infinitesimal limits 

of configuration and velocity. 
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Such inquiries have been called by Maxwell statistical. 

They belong to a branch of mechanics which owes its origin to 

the desire to explain the laws of thermodynamics on mechan¬ 

ical principles, and of which Clausius, Maxwell, and Boltz¬ 

mann are to be regarded as the principal founders. The first 

inquiries in this field were indeed somewhat narrower in their 

scope than that which has been mentioned, being applied to 

the particles of a system, rather than to independent systems. 

Statistical inquiries were next directed to the phases (or con¬ 

ditions with respect to configuration and velocity) which 

succeed one another in a given system in the course of time. 

The explicit consideration of a great number of systems and 

their distribution in phase, and of the permanence or alteration 

of this distribution in the course of time is perhaps first found 

in Boltzmann’s paper on the “ Zusammenhang zwischen den 

Satzen fiber das Verhalten mehratomiger Gasmolekule mit 

Jacobi’s Princip des letzten Multiplicators ” (1871). 

But although, as a matter of history, statistical mechanics 

owes its origin to investigations in thermodynamics, it seems 

eminently worthy of an independent development, both on 

account of the elegance and simplicity of its principles, and 

because it yields new results and places old truths in a new 

light in departments ([Uite outside of thermodynamics. More¬ 

over, the separate study of this branch of mechanics seems to 

afford the best foundation for the study of rational thermody¬ 

namics and molecular mechanics. 

The laws of thermodynamics, as empirically determined, 

express the approximate and probable behavior of systems of 

a great number of particles, or, more precisely, they express 

the laws of mechanics for such systems as they appear to 

beings who have not the fineness of perception to enable 

them to appreciate quantities of the order of magnitude of 

those which relate to single particles, and who cannot repeat 

their experiments often enough to obtain any but the most 

probable results. The laws of statistical mechanics apply to 

conservative systems of any number of degrees of freedom, 



PREFACE. ix 

and are exact. This does not make them more difficult to 

establish than the approximate laws for systems of a great 

many degrees of freedom, or for limited classes of such 

systems. The reverse is rather the case, for our attention is 

not diverted from what is essential by the peculiarities of the 

system considered, and wc are not obliged to satisfy ourselves 

that the effect of the quantities and circumstances neglected 

will be negligible in the result. The laws of thermodynamics 

may be easily obtained from the principles of statistical me¬ 

chanics, of which they are the incomplete expression, but 

they make a somewhat blind guide in our search for those 

laws. This is perhaps the principal cause of the slow progress 

of rational thermodynamics, as contrasted with the rapid de¬ 

duction of the consequences of its laws as empirically estab¬ 

lished. To this must be added that the rational foundation 

of thermodynamics lay in a branch of mechanics of which 

the fundamental notions and principles, and the characteristic 

operations, were alike unfamiliar to students of mechanics. 

We may therefore confidently believe that nothing will 

more conduce to the clear apprehension of the relation of 

thermodynamics to rational mechanics, and to the interpreta¬ 

tion of observed phenomena with reference to their evidence 

respecting the molecular constitution of bodies, than the 

study of the fundamental notions and principles of that de¬ 

partment of mechanics to which thermodynamics is especially 

related. 

Moreover, we avoid the gravest difficulties when, giving up 

the attempt to frame hypotheses concerning the constitution 

of material bodies, we pursue statistical inquiries as a branch 

of rational mechanics. In the present state of science, it 

seems hardly possible to frame a dynamic theory of molecular 

action which shall embrace the phenomena of thermody¬ 

namics, of radiation, and of the electrical manifestations 

which accompany the union of atoms. Yet any theory is 

obviously inadequate which does not take account of all 

these phenomena. Even if we confine our attention to the 
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phenomena distinctively thermodynamic, we do not escape 

difficulties in as simple a matter as the number of degrees 

of freedom of a diatomic gas. It is well known that while 

theory would assign to the gas six degrees of freedom per 

molecule, in our experiments on specific heat we cannot ac¬ 

count for more than five. Certainly, one is building on an 

insecure foundation, who rests his work on hypotheses con¬ 

cerning the constitution of matter. 

Difficulties of this kind have deterred the author from at¬ 

tempting to explain the mysteries of nature, and have forced 

him to be contented with the more modest aim of deducing 

some of the more obvious propositions relating to tbe statis¬ 

tical branch of mechanics. Here, there can be no mistake in 

regard to the agreement of the hj^potheses with the facts of 

nature, for nothing is assumed in that respect. The only 

error into which one can fall, is the want of agreement be¬ 

tween the premises and the conclusions, and this, with care, 

one may hope, in the main, to avoid. 

The matter of the present volume consists in large measure 

of results which have been obtained by the investigators 

mentioned above, although the point of view and the arrange¬ 

ment may be different. These results, given to the public 

one by one in the order of their discovery, have necessarily, 

in their original presentation, not been arranged in the most 

logical manner. 

In the first chapter we consider the general problem which 

has been mentioned, and find what may be called the funda¬ 

mental equation of statistical mechanics. A particular case 

of this equation will give the condition of statistical equi¬ 

librium, i. e., the condition which the distribution of the 

systems in phase must satisfy in order that the distribution 

shall he permanent. In the general case, the fundamental 

equation admits an integration, which gives a principle which 

may be variously expressed, according to the point of view 

from which it is regarded, as the conservation of density-in¬ 

phase, or of extension-in-phase, or of probability of phase. 
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In the second chapter, we apply this principle of conserva¬ 

tion of probability of phase to the theory of errors in the 

calculated phases of a system, when the determination of the 

arbitrary constants of the integral equations are subject to 

error. In this application, we do not go beyond the usual 

apjpiroximations. In other words, we combine the principle 

of conservation of probability of phase, which is exact, with 

those approximate relations, which it is customaiy to assume 

in the “ theory of errors.” 

In the third chapter we apply the principle of conservation 

of extension-in-phase to the integration of the differential 

equations of motion. This gives Jacobi’s “last multiplier,” 

as has been sliowm by Boltzmann. 

In the fourth and following chapters we return to the con¬ 

sideration of statistical equilibrium, and confine our attention 

to conservative systems. We consider espjecially ensembles 

of systems in which the index (or logarithm) of probability of 

phase is a linear function of the energy. This distribution, 

on account of its unique importance in the theory of statisti¬ 

cal equilibrium, I have ventured to call canonical, and the 

divisor of the energy, the modulus of distribution. The 

moduli of ensembles have properties analogous to temperature, 

in that equality of the moduli is a condition of equilibrium 

with respect to exchange of energy, when such exchange is 

made possible. 

We find a differential equation relating to average values 

in the ensemble which is identical in form with the funda¬ 

mental differential equation of thermodynamics, the average 

index of probability of phase, with change of sign, correspond¬ 

ing to entropy, and the modulus to temperature. 

For the average square of the anomalies of the energy, we 

find an expression which vanishes in comparison with the 

square of the average energy, when the number of degrees 

of freedom is indefinitely increased. An ensemble of systems 

in which the number of degrees of freedom is of the same 

order of magnitude as the number of molecules in the bodies 
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with which we experiment, if distributed canonically, would 

therefore appear to human observation as an ensemble of 

systems in which all have the same energj''. 

We meet with other quantities, in the development of the 

subject, which, when the number of degrees of freedom is 

very great, coincide sensibly with the modulus, and with the 

average index of probability, taken negatively, in a canonical 

ensemble, and which, therefore, may also be regarded as cor¬ 

responding to temperature and entropy. The correspondence 

is however imperfect, when the number of degrees of freedom 

is not very great, and there is nothing to recommend these 

quantities except that in definition they may be regarded as 

more simple than those which have been mentioned. In 

Chapter XIV, this subject of thermodynamic analogies is 
discussed somewhat at length. 

Finally, in Chapter XV, we consider the modification of 

the preceding results which is necessary when we consider 

systems composed of a number of entirely similar particles, 

or, it may be, of a number of particles of several kinds, all of 

each kind being entirely similar to each other, and when one 

of the variations to be considered is that of the numbers of 

the particles of the various kinds which are contained in a 

system. This supposition would naturally have been intro¬ 

duced earlier, if our object had been simply the expression of 

the laws of nature. It seemed desirable, however, to separate 

sharply the purely thermodynamic laws from those special 

modifications which belong rather to the theory of the prop¬ 

erties of matter. 

J. W. G. 

New Hatek, December, 1901. 
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STATISTICAL MECHANICS 

CHAPTER I. 

GENERAL NOTIONS. THE PRINCIPLE OF CONSERVATION 

OF EXTENSION-IN-PHASE. 

We shall use Hamilton’s form of the equations of motion for 

a system of n degrees of freedom, wi-iting for the 

(generalized) coordinates, qi, ■ • ■ 2„ for the (generalized) ve¬ 

locities, and 
jPi d^i + i\ .. . -I- (1) 

for the moment of the forces. We shall call the quantities 

1\,. ..F^ the (generalized) forces, and the quantities 

defined by the equations 

etc., (2) 

where e^, denotes the kinetic energy of the system, the (gen¬ 

eralized) momenta. The kinetic energy is here regarded as 

a function of the velocities and codrdinates. We shall usually 

regard it as a function of the momenta and coordinates,* 

and on this account we denote it by €p. This will not pre¬ 

vent us from occasionally using formidte like (2), where it is 

sufficiently evident the kinetic energy is regarded as function 

of the q's and ^'’s. But in expressions like de^ldq-^, where the 

denominator does not determine the question, the kinetic 

♦ The use of the momenta instead of the velocities as independent variahies 

is the characteristic of Hamilton’s method which gives his equations of motion 

their remarkable degree of simplicity. We shall find that the fundamental 

notions of statistical mechanics are most easily defined, and are expressed in 

the most simple form, when the momenta with the coordinates are used to 

describe the state of a system. 
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energy is always to be treated in the differentiation as function 

of the p’s and q a. 

We have then 

■ de„ ■ de,, , ,, , 

These equations will hold for any forces whatever. If the 

forces are conservative, in other words, if the expression (1) 

is an exact differential, we may set 

dq,’ 
de, 

dq^ 
etc., (4) 

where e, is a function of the coordinates which we shall call 

the potential energy of the system. If we write e for the 

total energy, we slrall have 

€ = fp + *5, (6) 

and equations (3) may be written 

de ■ de , 

The potential energy (e^) may depend on other variables 

beside the coordinates . qn- We shall often suppose it to 

depend in part on coordinates of external bodies, which we 

shall denote by a^, a^, etc. We shall then have for the com¬ 

plete value of the differential of the potential energy * 

de, ~ — Fi dq\ . . — dq,^ — d, ^2 du^ etc., (T) 

where ^2, etc., represent forces (in the generalized sense) 

exerted by the system on external bodies. For the total energy 

(e) we shall have 

de— dpi . . . + qndpn—p^ dq^ . . . 

— p„ dq„ — Ai dax — da^ — etc. (8) 

It wdl be observed that the kinetic energy (fj,) in the 

most general case is a quadratic function of the p’s (or q’s) 

* It will be observed, that although we call the potential energy of the 
system which we are considering, it is really so defined as to include that 
energy which might be described ae mutual to that system and external 
bodies. 
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involving also the ^’s but not the a’s ; that tlie potential energy-, 

when it exists, is function of the r/s and a’s; and that the 

total energy, when it exists, is function of the p’s (or q’s), the 

^’s, and the a’s. In expressions like dejdq^, the p’s, and not 

the q's, are to be taken as independent variables, as has already 

been stated with respect to the kinetic energy. 

Let us imagine a great number of independent systems, 

identical in nature, but differing in phase, that is, in their 

condition with respect to configuration and velocity. The 

forces are supposed to be determined for every system by the 

same law, being functions of the coordinates of the system 

^j, .. .q„, either alone or with the coordinates Sj, a^, etc. of 

certain external bodies. It is not necessary that they should 

be derivable from a force-function. The external coordinates 

aj, etc. may vary with the time, but at any given time 

have fixed values. In this they differ from the internal 

coordinates q^, • • • qni which at the same time have different 

values in the different systems considered. 

Let us especially consider the number of systems which at a 

given Instant fall within specified limits of phase, viz., those 

for which 

Pi <Pi< Til qi < ?i < ?i". 
pi <Pi< pi', qi <q%< qi', 

pi <<pi', qi <qn< q", 

the accented letters denoting constants. We shall suppose 

the differences p" — pj', qi' — q^, etc. to be infinitesimal, and 

that the systems are distributed in phase in some continuous 

manner,* so that the number having phases within the limits 

specified may be represented by 

{pi' —pi) ■ ■ • {pi' — pi) {qi' - qi) ■ ■ ■ {qi' - qi), (lo) 

* In stTictness, a finite number of systems cannot be distribntetl contin¬ 

uously in phase. But by increasing indefinitely the number of systems, we 

may approximate to a continuous law of distribution, such as is bore 

described. To avoid tedious circumlocution, language like the above mny 

be allowed, although wanting in precision of expression, when tiie sense in 

which it is to be taken appears sufficiently clear. 
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or more briefly by 

D dpi . . . dpn dqi . . . dq„, (11) 

where D is a function of the pa and q& and in general of t also, 

for as time goes on, and the individual systems change their 

phases, the distribution of the ensemble in please will in gen¬ 

eral vary. In special cases, the distribution in phase \yill 

remain unchanged. These are cases of statistical equilibrium. 

If we regard all possible phases as forming a sort of exten¬ 

sion of 2 w dimensions, wo may regard the product of differ¬ 

entials in (11) as expressing an element of this extension, and 

D as expressing the density of the systems in that element. 

We shall call the product 

dpi . . .dp^dqi. . . dq^ (12) 

an element of extensionrin-phase, and I) the demity-inr-phase 

of the systems. 
It is evident that the changes which take place m the den¬ 

sity of the systems in any given element of extension-in¬ 

phase will depend on the dynamical nature of the, .systems 

and their distribution in phase at the time considered. 

In the case of conservative .systems, with which we shall be 

principally concerned, their dynamical nature is completely 

determined by the function which expresses the energy (e) in 
terms of the p's, q’s, and a’s (a function supposed identical 

for all the systems); in the more general case which we are 

considering, the dynamical nature of the systems is deter¬ 

mined by the functions which express the kinetic energy (e^) 

in terms of the ^’s and q’s, and the forces in terius of the 

q’s and a’s. The distribution in phase is expressed for the 

time considered by D as function of the y’s and g’s. To find 

the value of dDjdt for the specified element of extension-in- 

phase, we observe that the number of systems within the 

limits can only be varied by systems pa.ssing the limits, which 

may take place in 4 n different ways, viz., by the p^ of a sy,s- 

tem. passing the limit py, or the limit py', or by the qy of a 

system passing the Umit qy, or the limit q(', etc. Let us 

consider these cases separately. 
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In the first place, let us consider the number of systems 

which in the time dt pass into or out of the specified element 

by Pj passing the limit pj'. It will be convenient, and it is 

evidently allowable, to suppose dt so small that the quantities 

dt, qi dt, etc., which represent the increments of pj, q^, etc., 

in the time dt shall be infinitely small in comparison with 

the infinitesimal differences jCj" — p^, q" — j/, etc., which de¬ 

termine the magnitude of the element of extension-in-phase. 

The systems for which p^ passes the limit pi in the interval 

dt are those for which at the commencement of this interval 

the value of p-^ lies betryeen pi and pi — pj dt, as is evident 

if we consider separately the cases in which p-^ is positive and 

negative. Those systems for wliich lies between these 

limits, and the other ^’s and g’s between the limits specified in 

(9) , will therefore pass into or out of the element considered 

according as p is positive or negative, unless indeed they also 

pass some other limit specified in (9) during the same inter¬ 

val of time. But the number which pass any two of these 

limits will be represented by an expression containing the 

square of dt as a factor, and is evidently negligible, when dt 

is sufficiently small, compared with the number which we are 

seeking to evaluate, and which (with neglect of terms contain¬ 

ing dfi) may be found by substituting jpj dt for pi' — pi in 

(10) or for dpi in (11). 

The expression 

Dpi dt dp,i. . . dp„ dqi. . . dq^ (13) 
will therefore represent, according as it is positive or negative, 

the increase or decrease of the number of systems within the 

given limits which is due to systems passing the limit pi. A 

similar expression, in which however JD and p will have 

slightly different values (being determined for pi' instead of 

pI), will represent the decrease or increase of the number of 

systems due to the passing of the limit pi'. The difference 

of the two expressions, or 

dpi.. . dp„ dqi.. . dq„ dt (14) 
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will represent algebraically the decrease of the number of 

systems witMn the limits due to systems passing the limits 

and p{'. 

The decrease in the number of systems within the limits 

due to systems passing the limits and q^’ may be found in 

the same way. This will give 

(16) 

for the decrease due to passing the four Limits p{, p", q{, q{' 

But since the equations of motion (3) give 

dpi d?i ’ 
(16) 

the expression reduces to 

idD . . dD ■ 
'*■ dq-, d#. (17) 

If we prefix 2 to denote summation relative to the suffixes 

1 we get the total decrease in the number of systems 

within the limits in the time dt. That is, 

^ {dB ■ dD . \ ^ 

fdD\ 
Vdd) ^ \ /p, 3 

dpj^ dqi . . . dq„ dt — 

— dD dpi . . . dp„ dqi . . . dq^, (18) 

2 
fd^ 
\dpi 

dD 
n), (19) 

where the suffix applied to the differential coefficient indicates 

that the p’a and ^’s are to be regarded as constant in the differ¬ 

entiation. The condition of statistical equilibrium is therefore 

2 
/dD . dD . 
\dpi'^'- dqi'^^ ) = 0. (20) 

If at any instant this condition is fulfilled for all values of the 

p’s and q’s, (dDfdt)p^j vanishes, and therefore the condition 

will continue to hold, and the distribution in phase will be 

permanent, so long as the external coordinates remain constant. 

But the statistical equilibrium would in general be disturbed 

by a change in the values of the external coordinates, which 
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would alter the values of the ^’s as determined by equations 

(3), and thus disturb the relation expressed in the last equation. 

If we write equation (19) in the form 

fcW\ , „ fdD ■ , dD ■ ,\ . U),., + ^ Kdp, ^ 
it will be seen to express a theorem of remarkable simplicity. 

Since .13 is a function of t, pj, . . . y>„, 5, ,... g'n, its complete 

differential will consist of parts due to the variations of all 

these quantities. Now the first term of the equation repre¬ 

sents the increment of D due to an increment of t (with con¬ 

stant values of the p’s and g'’s), and the rest of the first member 

represents the increments of B due to increments of the p’s 

and j’s, expressed by dt, dt, etc. But these are precisely 

the increments which the p’s and q's, receive in the movement 

of a system in the time dt. The whole expression represents 

the total increment of B for the varying phase of a moving 

system. We have therefore the theorem : — 

In an ensemble of mechanical systems identical in nature and 

subject to forces determined by identical laivs, but distributed 

in phase in any continuous manner, the density-iriphase is 

Constantin time for the varying phases of a moving system; 

provided, that the forces of a system are functions of its co¬ 

ordinates, either alone or with the time.* 

This may be called the principle of conservation of density- 

in-phase. It may also be "written 

where a,. ..h represent the arbitrary constants of the integral 

equations of motion, and are suffixed to the differential co- 

* The condition that the forces F,,.. .F„ are functions of g,, .. .gn and 

01,02, etc., which last are functions of the time, is analytically equivalent 

to the condition that Fi, ...Fn are functions of qi, ...gn and the time. 

Explicit mention of the external coordinates, Oi, 02, etc., has been made in 

the preceding pages, because our purpose will require us hereafter to con¬ 

sider these coordinates and the connected forces, A^, A^, etc., which repre¬ 

sent the action of the systems on external bodies. 
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efficient to indicate that they are to be regarded as constant 

in the differentiation. 

We may give to this principle a slightly difl^erent expres¬ 

sion. Let us call the value of the integral 

dpi ■ ■ . dp„ dqi . . . dq. (23) 

taken within any limits the extemion-in-phase within those 

limits. 

When the phasses hounding an extension-in-phase vary in 

the course of time according to the dynamical laws of a system 

subject to forces which are functions of the coordinates either 

alone or with the time., the value of the extension-in-phase thus 

hounded remains constant. In this form the principle may be 

called the principle of conservation of extensionringohase. In 

some respects this may be regarded as the most simple state¬ 

ment of the principle, since it contains no explicit reference 

to an ensemble of systems. 

Since any extension-in-phase may be divided into infinitesi¬ 
mal portions, it is only necessary to prove the principle for 

an infinitely small extension. The number of systems of an 

ensemble which fall within the extension will be represented 

by the integral 

X) . . . dp„ dqi . . . dq„. 

If the extension is infinitely small, we may regard D as con¬ 

stant in the extension and write 

Dj'...j'dpi...dp,dq,^...dq„ 

for the number of systems. The value of tlris expression must 

be constant in time, since no systems are supposed to be 

created or destroyed, and none can pass the limits, because 

the motion of the limits is identical with that of the systems. 

But we have seen that B is constant in time, and therefore 

the integral 

/■ ■ -P”' ■ 

dp„ dqi. . . dq„, 
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which we have called the extension-in-phase, is also constant 

ill time.* 
Since the system of coordinates employed in the foregoing 

discussion is entirely arbitrary, the values of the coordinates 

relating to any configuration and its Immediate vicinity do 

not impose any restriction upon the values relating to other 

configurations. 'I'he fact that the quantity which we have 

called density-in-phase is constant in time for any given sys¬ 

tem, implies therefore that its value is independent of the 

coordinates which are used in its evaluation. For let the 

density-in-phase as evaluated for the same time and phase by 

one system of coordinates be 7>/, and by another system D^. 

A system which at that time has that phase will at another 

time have another phase. Let the density as calculated for 
this second time and phase by a third system of coordinates 

be jDg". Now we may imagine a system of coordinates which 

at and near the first configuration will coincide with the first 

system of coordinates, and at and near the second configuration 

will coincide with the third system of coordinates. This will 

give = 7>g". Again we may imagine a system of coordi¬ 

nates which at and near tlie first configuration will coincide 

with the second system of coordinates, and at and near the 

* If we regard a phase as represented by a point in space of 2 n dimen¬ 

sions, the changes which take place in the course of time in our ensemble of 

systems will be represented by a current in such space. This current will 

be steady so long as the external coordinates are not varied. In any case 

the current will satisfy a law w'hich in its various expressions is analogous 

to the hydrodynamic law which may be expressed by the phrases conserva¬ 

tion of volumes or conservation of density about a moving point, or by the equation 

dx dy dz 

The analogue in statistical mechanics of this equation, viz,, 

dpi dqi dp2 dr/2 

may be derived directly from equations (3) or (6), and may suggest such 

theorems as have been enunciated, if indeed it is not regarded as making 

them intuitively evident. The somewiiat lengthy demonstrations given 

above will at least serve to give precision to the notions involved, and 

familiarity with their use. 
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second configuration will coincide with the third system of 

cooalinates. This will give = We have therefore 

A' = A'- 
It follows, or it may be proved in the same way, that the 

value of an extension-in-phase is independent of the system 

of coordinates which is used in its evaluation. This may 

easily be verified directly. If q^,...qn, Qi, - Qn are two 
systems of coordinates, and Pj,. . . the cor¬ 

responding momenta, we have to prove that 

..dp^dqi...dq, dP,...dP„dQ,...dQ^, (24) 

when the multiple integrals are taken within limits consisting 

of the same phases. And this will be evident from the prin¬ 

ciple on which we change the variables in a multiple integral, 

if we prove that 

d(Pit • ■ • Pn, Qij • • • Qr!)_^ C25) 
d{pi, . . .2J„, S’!, . . . ?„) “ ’ ^ 

where the first member of the equation represents a Jacobian 

or functional determinant. Since all its elements of the form 

dQjdp are equal to zero, the determinant reduces to a product 

of two, and we have to prove that 

(26) . • •/>„) dfyi, . ..q.) 

We may transform any element of the first of these deter¬ 

minants as follows. By equations (2) and (3), and in 

view of the fact that the Q's are linear functions of the g’s 

and therefore of the y’s, with coefficients involving the qs, 

so that a differential coefficient of the form d Qr/dpy is function 

of the g^’s alone, we get * 

* The form of the equation 

d d^p _ d dfp 

dpif d(ix dQx dpy 

in (27) reminds us of the fundamental identity in the differential calculns 

relating to the order of differentiation with respect to independent variables. 

But it will be observed that here the variables Qx and p, are not independent 

and that the proof depends on the linear relation between the and the p’s. 
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dp. 

But since 

dp, dQ^ r=\\dQ^dQ^dp,) 

A. T/^ ^ ^ /27) 
dQ^ dQ,: dp, dQ^’ 

d% ^ dq, 
dQ:^ dQ^ 

Therefore, 

(^(Pi, . ■ ■ P„) _ %i, • • • g„) _ d{qy, . . . q„) 

d{px,...pn) d{Qi,...Q,) d(Qi,...Q„) 

The equation to bo proved is thus reduced to 

d(qi, ■■■ In) d(Qu . .. Q„) _ . 
d{Qi, .. . Qn) d{qi, . . .q„) ’ 

(28) 

(29) 

(30) 

which is easily proved by the ordinary rule for the multiplica¬ 

tion of determinants. 

The numerical value of an extension-in-phase will however 

depend on the units in which we measure energy and time. 

For a product of the form dp dq has the dimensions of energy 
multiplied by time, as appears from equation (2), by which 

the momenta are defined. Hence an extension-in-phase has 

the dimensions of the mth power of the product of energy 

and time. In other words, it has the dimensions of the wth 

power of action, as the term is used in the ‘ principle of Least 

Action.' 

If we distinguish by accents the values of the momenta 

and coordinates which belong to a time if, the unaccented 

letters relating to the time t, the principle of the conserva¬ 

tion of extension-in-phase may be written 

J'...j'dpi... dp„dqi ...dqn^J"... Jdpi'... dp,! dq^'... dq!, (31) 

or more briefly 

(32) 
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the limiting phases being those which belong to the same 

systems at the times t and t! respectively. But we have 

identically 

d{p, ■ ■ ■ y„) 

d(/V • • • 
dp^' . . . dq^ 

for such limits. The principle of conservation of extension-in- 

phase may therefore be expressed in the form 

■ ■ ■ gn) ^ j (33) 

This equation is easily proved directly. For we have 

identically 

d{Pi, ■■■gn) _ d(pi,... y„) .. .q„") 
d{Pi, ■ ■ ■ <ln) d{pP’,... 5„") cZ(pi', ... qj) ’ 

where the double accents distmguish the values of the momenta 

and coordinates for a tune t". If we vary t, while f and t" 

remain constant, we have 

c/(pi,. . . g„) ^ • • • gn") ...?„) ^ ,g „ 

dl d{pi>, . . . q,!) d{pi',. . . qd) dt d{pi",... qj’}' ^ ^ 

Now since the time t" is entirely arbitrary, nothing prevents 

us from making tP identical with t at the moment considered. 

Then the determinant 
d(pi 

diPx", .. • S,") 

will have unity for each of the elements on the principal 

diagonal, and zero for all the other elements. Since every 

term of the determinant except the product of the elements 

on the principal diagonal will have two zero factors, the differen¬ 

tial of the determinant will reduce to that of the product of 

these elements, i. e., to the sum of the differentials of these 

elements. This gives the equation 

^ djpi, ...gn) _ , dp„^ dq^ _ 
dt d(pi", .. . q„") dpi" ' ’ ’ dq^' ' ' ’ dq„" 

Now since t = t", the double accents in the second member 

of this equation may evidently be neglected. This will give, 

in virtue of such relations as (16), 
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^ •••g'J =: 0 
dt d(pi", .. . rj„») ' ’ 

which substituted in (34) will give 

iL ■ • ■ ?-) ^ 0 

The determinant in this equation is therefore a constant, the 

value of which may be determined at the instant when t — t', 

when it is evidently tmity. Equation (33) is therefore 

demonstrated. 
Again, if we write a,^ for a system of 2 m arbitrary con¬ 

stants of the integral equations of motion, etc. will be 

functions of a, ... A, and t, and we may express an extonsion- 

in-phase in the form 

'djPx, ■ ■ • gn) 

d{a, .../() 
da , dh. (35) 

If we suppose the limits specified by values of a, ... ^, a 

system initially at the limits will remain at the limits. 

The principle of conservation of extension-in-phase requires 

that an extension thus bounded shall have a constant value. 

This requires that the determinant under the integral sign 

shall be constant, which may be written 

d d{px, ■■•?»)_() 
dt d(a, . . . h) 

(36) 

This equation, which may be regarded as expressing the prin¬ 

ciple of conservation of extension-in-phase, may be derived 

directly from the identity 

d(pi, _ d(pi, ...q„) d{px', . ■ . qj) 
d(a, ...h) d{pi\ . .. g„') d{a, . . . h) 

in connection with equation (33). 

Since the coordinates and momenta are functions of a, ... ^, 

and f, the determinant in (36) must be a function of the same 

variables, and since it does not vary with the time, it must 

be a function of a, ... ^ alone. We have tlierefore 

d{pi, 

d{a, 
?n) 

h) 
= func. {a, .. ,h). (37) 
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It is tlie relative numbers of systems which fall within dif¬ 

ferent hmits, rather than the absolute numbers, with which we 

are most concerned. It is indeed only with regard to relative 

numbers that such discussions as the precedhig will apply 

with literal precision, since the nature of our reasonmg implies 

that the number of systems in the smallest element of space 

which we consider is very great. This is evidently inconsist¬ 

ent with a finite value of the total number of systems, or of 

the density-in-phase. Now if the value of B is infinite, we 

cannot speak of any definite number of systems within any 

finite limits, since all such numbers are infinite. But the 

ratios of these infinite numbers may be perfectly definite. If 

we write N for the total number of systems, and set 

P may remain finite, when iV" and B become infinite, 

integral 
The 

(39) 

taken within any given limits, will evidently express the ratio 

of the number of systems falling within those LLroits to the 

whole number of systems. This is the same thing as the 

prohahility that an unspecified system of the ensemble (i. e, 

one of which we only know that it belongs to the ensemble) 

will lie within the given limits. The product 

Pdpi...dq^ (40) 

expresses the probability that an unspecified system of the 

ensemble will be found in the element of extensiou-in-phase 

dpi ... dq^- We shall call P the coefficient of prohahility of the 

phase considered. Its natural logarithm we shall call the 

index of prohahility of the phase, and denote it by the letter y. 

If we substitute NP and JV'e’’ for B in equation (19), we get 
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The condition of statistical equilibrium may be expressed, 

by equating to zero the second member of either of these 

equations. 

The same substitutions in (22) give 

= 0, (43) 
a, ...h 

That is, the values of P and r], like those of D, are constant 

in time for moving systems of the ensemble. From this point 

of view, the principle which otherwise regarded ha.s been 

called the principle of conservation of density-in-phase or 

conservation of extension-in-phase, may be called the prin¬ 

ciple of conservation of the coefficient (or index) of proba¬ 

bility of a phase varying according to dynamical laws, or 

more briefly, the principle of conservation of prohability of 

phase. It is subject to the limitation that the forces must be 

functions of the codrdinates of the system either alone or with 

the time. 

The application of this principle is not limited to cases in 

which there is a formal and explicit reference to an ensemble of 

systems. Yet the conception of such an ensemble may serve 

to give precision to notions of probability. It is in fact cus¬ 

tomary in the discussion of probabilities to describe anything 

which is imperfectly known as something taken at random 

from a great number of things which are completely described. 

But if we prefer to avoid any reference to an ensemble 

of systems, we may observe that the probability that the 

phase of a system falls within certain limits at a certain time, 

is equal to the probability that at some other time the phase 

will fall within the limits formed by phases corresponding to 

the first. For either occurrence necessitates the other. That 

is, if we write P' for the coefficient of probability of the 

phase pi, . . . qf at the time t', and P" for that of the phase 
pf,. , . qf at the time f', 

2 
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J.. .JF' . . . dq,: = J. . -Jf" dp^'. . . (45) 

where the limits in the two cases are formed by corresponding 

phases. When the integrations cover infinitely small vari¬ 

ations of the momenta and coordinates, we may regard F' and 

jP" as constant in the integrations and write 

P'J- • Jdpi' ■ . ■ dqj' = F'J...J. .. dqF- 

Now the principle of the conservation of extension-in-phase, 

which has been proved (viz., in the second demonstration given 

above) independently of any reference to an ensemble of 

systems, requires that the values of the multiple integrals in 

this equation shall be equal. This gives 

P" = PK 

With reference to an important class of cases this principle 
may be enunciated as follows. 

When the differential equations of motion are exactly known, 

hut the constants of the integral equations imperfectly deter¬ 

mined, the coefficient of probability of any phase at any time is 

equal to the coefficient of probability of the corresponding phase 

at any other time. By corresponding phases are meant those 

which are calculated for different times from the same values 

of the arbitrary constants of the integral equations. 

Since the sum of the probabilities of all possible eases is 

necessarily unity, it is evident that we must liave 

au 

J. . .Jpdpi...dq„ = l, 

phases 

where the integration extends over all phases, 

only a different form of the equation 

all 

N^J...jDdp i. ..dq ni 

phases 

which we may regard as defining df. 

(46) 

This is indeed 
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The values of the coefficient and index of probability of 

phase, like that of the density-in-phase, are independent of the 

system of coordinates which is employed to express the distri¬ 

bution in phase of a given ensemble. 

In dimensions, the coefficient of probability is the reciprocal 

of an extension-in-phase, that is, the reciprocal of the wth 

power of the product of time and energy. The index of prob¬ 

ability is therefore affected by an additive constant when we 

change our units of time and energy. If the unit of time is 

multiplied by c, and the unit of energy is multiplied by c,, aU 

indices of probability relating to systems of n degrees of 

freedom will be increased by the addition of 

n log c, -f n log Ce. (47) 



CHAPTER II. 

APPLICATION OF THE PRINCIPLE OF CONSERVATION 

OF EXTENSION-IN-ITIASE TO THE THEORY 

OF ERRORS. 

Let us now proceed to combine the principle which has been 

demonstrated in the preceding chapter and which in its differ¬ 

ent applications and regarded from different points of view 

has been variously designated as the conservation of density- 

in-phase, or of extonsion-in-phase, or of probability of phase, 

with those approximate relations which are generally used in 

the ‘theory of errors.’ 
We suppose that the differential equations of the motion of 

a system are exactly known, but that the constants of the 

integral equations are only approximately determined. It is 

evident that the probability that the momenta and coordinates 

at the time t' fall between the limits j?/ and yjj' + dp/, and 

2'/ + dqy, etc., may be expressed by the fomiula 

dp^'. . . dqj, (48) 

where p' (the index of probability lor the phase in question) is 

a function of the coordinates and momenta and of the time. 

Let Qy, Py, etc. be the values of the coordinates and momenta 

which give the maximmn value to rj', and let the general 

value of r}’ be developed by Taylor’s theorem according to 

ascending powers and products of the differences p/ — Py, 

— Qy, etc., and let us suppose that we have a sufficient 

approximation without going beyond terms of the second 

degree in these differences. We may therefore set 

n' = e- F', (40) 

where c is independent of the differences py — Fy, qy — Qy, 

etc., and F' is a homogeneous quadratic function of these 
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differences. The terms of the first degree vanish in virtue 

of the maximum condition, wlricli also requires that F' must 

have a positive value except when all the differences men¬ 

tioned vanish. If we set 

(50) 

we may write for the probability that the phase lies within 

the limits considered 

Ge-'P’ dpi'. . . dqj. (51) 

G is evidently the maximum value of the coefficient of proba¬ 

bility at the time considered. 
In regard to the degree of approximation represented by 

these formula), it is to be observed that we suppose, as is 
usual in the ‘theory of errors,’ that the determiiration (ex¬ 

plicit or implicit) of the constants of motion is of such 

precision that the coefficient of probability e’' or Cer^' is 

practically zero except for very small values of the differences 

Pj' — Pj', etc. For very small values of these 

differences the approximation is evidently in general sufficient, 

for larger values of these differences the value of Qg^"' will 

be sensibly zero, as it should be, and in this sense the formula 

will represent the facts. 
We shall suppose that the forces to which the system is 

subject are functions of the coBrdinates either alone or with 

the time. The principle of conservation of probability of 

phase will therefore apply, which requires that at any other 

time (t") the maximum value of the coefficient of probability 

shall be the same as at the time t', and that the phase 

(Pj", §j", etc.) which has this greatest probability-coefficient, 

shall be that which corresponds to the phase (Pj', Q^, etc.), 

L e., which is calculated from the same values of the constants 

of the integral equations of motion. 

We may therefore write for the probability that the phase 

at the time t” falls within the limits pj" and pj" + 

and gj" + etc., 

Ce-^"dp.!<. . . dqJ', (62) 
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where C represents the same value as in the preceding 

formula, viz., the constant value of the maximum coefficient 

of probability, and F" is a quadratic function of the differences 

Pj" — P^ \ q^' — Q^", etc., the phase (Pi", Qi' etc.) being that 

which at the time t" corresponds to the phase (Pj', §i', etc.) 

at the time t'. 

Now we have necessarily 

Cdp-i'... dqj Ce-^"dpi" ... dq" 1, (53) 

when the integration is extended over all possible phases. 

It will be allowable to set ± co for the limits of all the coor¬ 

dinates and momenta, not because these values represent the 

actual limits of possible phases, but because the portions of 

the integrals lying outside of the limits of all possible phases 

will have sensibly the value zero. With ± oo for limits, the 

equation gives 

Ctt" CtP 

Vf ~ N'T' 
(64) 

where f is the discriminant * of P', and /" that of F". This 

disoriminant is therefore constant in time, and like G an abso¬ 

lute invariant in respect to the system of coordinates which 

may be employed. In dimensions, like C'^ it is the reciprocal 

of the 2nth power of the product of energy and time. 

Let us see precisely how the functions F' and F" are related. 

The principle of the conservation of the probability-coefficient 

requires that any values of the cobrdinates and momenta at the 

time t' shall give the function F' the same value as the corre¬ 

sponding coordinates and momenta at the time t" give to P". 

Therefore F” may be derived from F' by substituting for 

p/, ...qj their values in terms of p/', ... 2i". Now we 

have approximately 

* This term is used to denote the determinant having for elements on the 

principal diagonal the coefScients of the squares in the quadratic function 

F', and for its other elements the halves of the coefScients of the products 

in F'. 



AND THEORY OF ERRORS. 23 

1 II 1 

dp,' 

■ ■ 

- Qj = (Pi" - ■ 
dQ„' 

■ ■ dQF 

{t!' - QJ') 

(qn" - Qn'O, 

(55) 

and as in F" terms of higher degree than the second are to be 

neglected, these equations may be considered accurate for the 

purpose of the transfonuation requked. Since by equation 

(33) the eliminant of these equations has the value unity, 

the discriminant of F" will be equal to that of F', as has 

already appeared from the consideration of the principle of 

conservation of probability of phase, which is, in fact, essen¬ 

tially tire same as that expressed by equation (33). 
At the tune t', the phases satisfying the equation 

F' k, (56) 

where k is any positive constant, have the probability-coeffi¬ 

cient Oe~'‘. At the time t", the corresponding phases satisfy 

the equation 
F" = k, (57) 

and have the same probability-coefficient. So also the phases 

within the limits given by one or the other of these equations 

are corresponding phases, and have probability-coefficients 

greater than G while phases without these limits have less 

probability-coefficients. The probabilitj’’ that the phase at 

the time t’ falls within the limits F' —k is the same as the 

probability that it falls within the limits F" = k at the time t'’, 

since either event necessitates the other. This probability 

may be evaluated as follows. We may omit the accents, as 

we need only consider a single time. Lot us denote the ex¬ 

tension-in-phase within the limits F—kby U, and the prob- 

abibty that the phase falls within these limits by R, also the 

extension-in-phase within the limits = 1 by Uy We have 
then by definition 

F=lt 

(68) 
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F=k 

dpi. .. dq^, (59) 

F^l 

Ui-J‘...J‘dpi... dq,. (60) 

But since F s, homogeneous quadratic function of the 

differences 

Ih — A) — A, • • • 2» — A. 

we have identically 

e=zii 

J- J— A) • • • <^(2» - 

kFz=ik 

=f - f - A)... d(2, - Q.) 
F~1 

- aJ'. . . Jdipi — Pi) . .. d(q„ — A)- 

That is Pi= A" Pi, (61) 

whence dU= JJ^nk^^dk. (62) 

But if k varies, equations (58) and (59) give 

F^hririk 

dU=J. . .Jdpi ...dq^ 

F-k 
F~k^dk 

(63) 

dR —J*.. .J' Oe~'dpi . .. dq„ (64) 

Since the factor Ce~^ has the constant value Ce~* in the 

last multiple integral, we have 

dR = C e-’‘ dU = C U^n e-* dk, (65) 

P = - (7 Pijn e-* ^1 + A 4- ^ + • • • + + const. (66) 

We may. determine t^ .constant of integration by the condition 

that R vanislies with k. This gives 
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i? = C Cr, jn - C i7i 1». 6-‘- (^1 + A + I’ + . ■ . + (67) 

We may determine the value of the constant by the con¬ 

dition that B—liovk— co. This gives (7 C/j |n = 1, and 

+ k + + (G8) 

It is worthy of notice that the form of these equations de¬ 

pends only on the number of degrees of freedom of the system, 

being in other respects independent of its dynamical nature, 

except that the forces must be functions of the coordinates 

either alone or with the time. 

If we write 

for the value of k which substituted in equation (68) will give 

R=\, the phases determined by the equation 

-F--=A^=i (70) 

will have the following properties. 
The probability that the phase falls witliin the limits formed 

by these phases is greater than the probability that it falls 

within any other limits enclosing an equal extension-in-phase. 

It is equal to the probability that the phase falls without the 

same limits. 
These properties are analogous to those w'hich in the theory 

of errors in the determination of a single quantity belong to 

values expressed by A ± a, when A is the most probable 

value, and a the ‘probable error.’ 



CHAPTER III. 

APPLICATION OF THE PRINCIPLE OF CONSERVATION OF 

EXTENSION-IN-PIIASE TO THE INTEGRATION OF THE 

DIFFERENTIAL EQUATIONS OF MOTION.* 

Wb have seen that the principle of conservation of exten¬ 

sion-in-phase may be expressed as a differential relation be¬ 

tween the coordinates and momenta and the arbitrary constants 

of the integral equations of motion. Now the integration of 

the differential equations of motion consists in the determina¬ 

tion of these constants as functions of the coordinates and 

momenta with the time, and the relation afforded by the prin¬ 

ciple of conservation of extension-in-phase may assist us in 

this determination. 

It will be convenient to have a notation which shall not dis¬ 

tinguish between the coordinates and momenta. If we write 

. . r2n for the coordinates and momenta, and a ... S as be¬ 

fore for the arbitrary constants, the principle of which we 

wish to avail ourselves, and which is expressed by equation 

(37), may be written 

d(ri ■ : func. (a, ... h). (71) 
d{a, ... A) 

Let us first consider the case in which the forces are deter¬ 

mined by the coordinates alone. Whether the forces are 

‘ conservative ’ or not is immaterial. Since the differential 

equations of motion do not contain the time (t) in the finite 

form, if we eliminate dt from these equations, we obtain 2 m. — 1 

equations in r^,... r^n and their differentials, the integration 

of which will introduce 2 m — 1 arbitrary constants which we 

shall caR h ... h. If we can effect these integrations, the 

* See Boltzmann: “Zuaammenliang zwischen den Satzen iiber das Ver- 

lialten meliratomiger Gasmoleciile mit Jacobi’s Princip des letzten Multi- 

pUcators. Sitzb. der Wiener Akad., Bd. LXIII, Abtli. II., S. 079, (1871). 
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remaining constant (a) will then be introduced in the final 

integration, <_viz., tliat of an equation containing dt.,) and will 

be added to or subtracted from t in the integral e(]^uation. 

Let us have it subtracted from t. It is evident then that 

Moreover, since b, . . . h and t — a are independent functions 

of rj, . ^ . r^n, the latter variables are functions of the former. 

The Jacobian in (71) is therefore function of 6, . .. h, and 

t — a, and since it does not vary with t it cannot vary with a. 

We have therefore in the case considered, viz., where the 

forces are functions of the coordinates alone, 

djn, . .. r^) 
■ — func. (i, ... h). (73) 

d(a, ... A) 

Now let us suppose that of the first 2 m — 1 integrations we 

have accomplished all but one, determining 2 ji — 2 arbitrary 

constants (say c, ... A) as functions of r.,, . . . r2„, leaving b as 

well as a to be determined. Our 2n — 2 finite equations en¬ 

able us to regard all the variables rj, . . . rjn, and all functions 

of these variables as functions of two of them, (say and rj,) 

with the arbitrary constants o, . . . h. To determine b, we 

have the following equations for constant values of c, ... A. 

, dr. , dr, „ 
dr, — da —— dh. 

da dh 

, dr, , dr, „ 
dra = da + ,, db, 

da db 

whence 
d(ri, ra) dr^ , , dr, , 

^ db —-—drT_ + -j- dr^. 
da da d(a,b') 

Now, by the ordinary formula for the change of variables, 

(74) 

/• • =/• ■ •/<"■■ • ■ • 

_ r rd(ri, .. . rg„) 

J ’ ' J d{a, ... A) 

_ C rd(ri, ... d(c, ... A) 

J " J d{a, .. .h 

dr.. 

da . . . dh 

da dh dr3 . 
.h) d(r3, ...r^,,) 
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where the limits of the multiple integrals are formed by the 

Siune phases. Hence 

djri, r^) _ d(ri, .. . r„J d(c, . . . h) 
d{a, b) d{a, . . . h) d{r^, . . . r^„)' ^ 

With the aid of this equation, which is an identity, and (72), 

we may write equation (74) in the form 

d(ri, .. . r^„) d(c, ... A) 
d(a, .. .h) d{rs, . . . 

dh = r.^ dri — r, dr2. (76) 

The separation of the variables is now easy. The differen¬ 

tial equations of motion give rj and in terms of , . . . r,„. 

The integral equations already obtained give c, . . . h and 

therefore the Jacobian d{c, . . . h)ld{r^^ . . . r.^,,), in terms of 

the same variables. But in virtue of these same integral 

equations, we may regard functions of r^, . . . ro_„ as functions 

of rj and with the constants e, ... h. If therefore we write 

the equation in the form 

d(ri, . ■ .r2„) _ 
d{a, ... A) 

ri 

d(c, ... A) 

d{r^, . .. r2„) 

drx — 
n 

rf(c, ... A) 

d(ra, ... 

dr^, 
(77) 

the coefficients of dcj and dr2 may be regarded as loiown func¬ 

tions of j-j and )*2 with the constants o, . . .h. The coefficient 
of db is by (73) a function of b, . . .h. It is not indeed a 

known function of these quantities, but since c, ... A are 

regarded as constant in the equation, we know that the first 

member must represent the differential of some function of 

b,... h, for which we may write b'. We have thus 

Tt} Ti 
db' = —r,-—rr dn--J-.-JV dri, ..-n, 

d(r3,...r2„) d{r^,...ri„) 

which may be integrated by quadratures and gives h' as func¬ 

tions of j-j, r2, . . . c, . . . A, and thus a,s function of r^, ... 

This integration gives us the last of the arbitrary constants 

which are functions of the coordinates and momenta without 

the time. The final integration, which introduces the remain- 
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ing constant (a), is also a quadrature, since the equation to 
be integrated may be expressed in the form 

dt = F (r,) fir,. 

Now, apart from any such considerations as have been ad¬ 
duced, if we limit ourselves to the changes which take place 
in time, we have identically 

^2 dr, — r, dr„ = 0, 

and rj and are given in terms of rj,... r^^ by the differential 
equations of motion. When we have obtained 2 « — 2 integral 

equations, w^e may regard r^ and rq as known functions of 
and r^. The only remaining difficulty is in integrating this 
equation. If the case is so simple as to present no difficulty, 
or if we have the skill or the good fortune to perceive that the 
multipher 

1 
d(c, .../;) ’ (79) 

d(ra, . .. rjJ 

or any other, wall make the first member of the equation an 
exact differential, we have no need of the rather lengthy con¬ 
siderations which have been adduced. The utility of the 
principle of conservation of extension-in-phase is that it sup¬ 
plies a ‘ multiplier ’ which renders the equation integrable, and 
which it might be difficult or impossible to find otherwise. 

It will be observed that the function represented by h' is a 
particular case of that represented by b. The system of arbi¬ 
trary constants a, b', c... h has certain properties n otable for 
simplicity. If we write b' for b in (77), and compare the 
result with (78), we get 

d(ri ... r.2„) 

d(a, b', 0, . . . h) 

Therefore the multiple integral 

(80) 
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taken within limits fonned by phases regarded as contempo 

raneous represents the extension-in-phase within those limits. 

The case is somewhat different when the force.s are not de¬ 

termined by the coordinates alone, but are functions of the 

coordinates with the time. All the arbitrary constants of the 

integral equations must tlien be regarded in the general case 

as functions of r^,. •. and t. We cannot use the princi¬ 

ple of conservation of extension-in-phase until we have made 

2 M — 1 integrations. Let us suppose that the constants b,_A 

have been determined by integration in terms of and 

f, leaving a single constant (a) to be thus determined. Our 

2 71 — 1 finite equations enable us to regard all the variables 

T-j,... as functions of a single one, say r^. 

For constant values of J,... A, we have 

(82) 

Now 

S'' ■ SSa ^’"2 • • • dT-s, =J'.. .j'dri . . . dr^ 

_ r rd(ri, . . . r,„) d(b, ... A) 

J " J d(a, . . . A) d(r2, . . . ?-2„) 
da dr. 

where the limits of the integrals are formed by the same 

phases. We have therefore 

dri _ d(r^, 

da 

■ r^^ dip, ... A) 
d{a, . . .h) d(r^, . . . 7’2„) 

by which equation (82) may be reduced to the form 

(83) 

d(n, 
d(a, d(b,. . . h) 

d(rii, ... r2„) 

n 
d(b, ... A) 

d(r2, . . . r^„) 

(84) 

Now we know by (71) that the coefficient of da is a func¬ 

tion of as,... A. Therefore, as A, ... A are regarded as constant 

in the equation, the first number represents the differential 
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of a function of a, ... h, which we may denote by a'. We 

have then 

1 r' 

"" d(b, ...h) ~ d(b, A ■ h) (85) 

which may be integrated by quadratures. In this case we 

may say that the principle of conservation of extension-in- 

phase has supplied the ‘ multiplier ’ 

1 
d{b, ...h) (86) 

d(r2, ... j-2„) 

for the integration of the equation 

dri — r\dt-= 0. (87) 

The system of arbitrary constants a',h,.. .h has evidently 

the same properties which were noticed in regard to the 

system a, b',.. .h. 



CHAPTER IV. 

ON THE DISTRIBUTION IN PHASE CALLED CANONICAL, 

IN WHICH THE INDEX OP PROBABILITY IS A LINEAR 

FUNCTION OF THE ENERGY. 

Let us now give our attention to the statistical equilibrium 

of ensembles of conservation sy.stems, especially to those cases 

and properties which promise to throw light on the phenom¬ 

ena of thermodynamics. 

The condition of statistical equilibrium may bo expressed 

in the form* 

, (dP ■ ,dP -s (88) 

where P is the coefficient of probability, or the quotient of 

the density-in-phase by the whole number of systems. To 

satisfy this condition, it is necessary and sufficient that P 

should be a function of the p’s and 5’s (the momenta and 

coordinates) which does not vary with the time in a moving 

system. In all cases which we are now considering, the 

energy, or any function of the energy, is such a function. 

P = func. (e) 

will therefore satisfy the equation, as indeed appears identi¬ 
cally if we write it in the form 

2 / dP de dP de N _ Q 
\dq^dpi dpidqj^ 

There are, however, other conditions to which P is subject, 

which are not so much conditions of statistical equilibrium, as 

conditions implicitly involved in the definition of tlie coeffi- 

* See equations (20), (41), (42), nlso the paragriiph following equation (20). 
The positions of any external bodies which can affect the systems are here 
supposed uniform for all the systems and constant in time. 
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cient of probability, whether the case is one of equilibrium 

or not. These are: tliat P should be single-valued, and 

neither negative nor imaginary for any phase, and that ex¬ 

pressed by equation (46), viz.. 

= 1. (89) 

These considerations exclude 

P — e X constant, 

as well a.s 

P = constant, 

as cases to be considered. 

The distribution represented by 

>? = logP = '^g, , (90) 

(91) 

where 0 and -i|r are constants, and 0 positive, seems to repre¬ 
sent the most simple case conceivable, since it has the property 

that when the system consists of parts with separate energies, 

the laws of the distribution in phase of the separate parts are 

of the same nature,— a property which enormously simplifies 

the discussion, and is the foundation of extremely important 

relations to thermodynamics. The case is not rendered less 

simple by the divisor 0, (a quantity of the same dimensions as 

£,) but the reverse, since it makes the distribution independent 

of the units employed. The negative sign of e is required by 

(89), which determines also the value of yjr for any given 

0, viz., 

zj'. . .J'e . . . dq„. 

phases 

(92) 

When an ensemble of systems is distributed in phase in the 

manner described, i. e., when the index of probability is a 
8 
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linear function of the energy, we shall say that the ensemble is 

ixmonicalli^ distributed, and shall call the divisor of the energy 

(0) the 'modulus of distribution. 

The fractional part of an ensemble canonically distributed 

which lies witliin any given limits of phase is therefore repre¬ 

sented by the multiple integral 

1^—C 

I' ’ ' ® ■ <^10 (93) 

taken within those limits. We may express the same thing 

by saying that the multiple integral expresses the probability 

that an unspecified system of the ensemble (i. e., one of 

which we only know that it belongs to the ensemble) falls 
within the given limits. 

Since the value of a multiple integral of the form (23) 

twhich we have called an extension-in-phase) hounded by any 

given phases is independent of the system of coordinates by 

wliich it is evaluated, the same must be true of the multiple 

integral in (92), as appears at once if we divide up this 

integral into parts so small that the exponential factor maj^ be 

regarded as constant in each. The value of -f- is therefore in¬ 

dependent of the system of coordinates employed. 

It is evident that might be defined as tire energy for 

which the coefficient of probability of phase has the value 

unity. Since however this coefficient has the dimensions of 

the inverse nih power of the product of energy and time,* 

the energy represented by -f- is not independent of the units 

of energy and time. But when these units have been chosen, 

the definition of rviU involve the same arbitrary constant as 

e, so that, while in any given case the numerical values of 

or e will be entirely indefinite until the zero of energy has 

also been fixed for the system considered, the difference ■xjr — e 
will represent a perfectly definite amount of energy, which is 

entirely independent of the zero of energy which we may 

choose to adopt. 

* See Chapter I, p. 19. 
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It is evident that the canonical distiibution is entirely deter¬ 

mined by the modulus (considered as a quantity o£ energy ) 

and the nature of the system considered, since when equation 

(92) is satisfied the value of the rnidtiple integral (93) is 

independent of the units and of the coordinates employed, and 

of the zero chosen for the energy of the system. 
In treating of the canonical distribution, we shall always 

suppose the multiple integral in equation (92) to have a 

finite value, as otherwise the coefficient of probability van¬ 

ishes, and the law of distribution becomes illusory. This wiU 

exclude certain cases, but not such apparently, as wull affect 

the value of our results with respect to their beming on ther¬ 

modynamics. It will exclude, for in.stance, cases in which the 

system or parts of it can be distributed in unlimited space 

(or in a space which has limits, but is still infinite in volume), 

while the energy remains beneath a finite limit. It also 

excludes many cases in which the energy can decrease without 

limit, as when the system contains material points which 

attract one another inversely as the squares of their distances. 

Cases of material points attracting each other inversely as the 

distances would be excluded for some values of and not 

for others. The investigation of such points is best left to 

the particular oases. For the purposes of a general discussion, 

it is sufficient to call attention to the assumption implicitly 

involved in the formula (92).* 
The modulus @ has properties analogous to those of tem¬ 

perature in thermodynamics. Let the system A be defined as 

one of an ensemble of systems of m degrees of freedom 

distributed in phase with a probabiUty-coelficient 

6 @ , 

It will be observed that similnr limitations exist in thermoclyTiamics. In 

order that a mass of gas can be in thermodynamic equilibrium, it is necessary 

that it be enclosed. There is no thermodynamic equilibrium of a (finite) mass 

of gas in an infinite space. Again, that two attracting particles should be 

able to do an infinite amount of work in passing from one configuration 

(which is regarded as possible) to another, is a notion which, although per¬ 

fectly intelligible in a mathematical formula, is quite foreign to our ordinary 

conceptions of matter. 
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and the system B as one of an ensemble of systems of n 

degrees of freedom distributed in phase with a probability- 

eoefficient 

e 0 , 

which has the same modulus. Let g'j, . . Pi, ■ ■ ■ Pm be the 
coordinates and momenta of A, and , .. . p^^^,... 

those of B. Now we may regard the systems A and B as 

together forming a system G, having m + n degrees of free¬ 

dom, and the coordinates and momenta ?i,. .. Q'm+n) Pv • • • Pm+n- 

The probability that the phase of the system C, as thus defined, 

will fall within the limits 

dpi, . .. dqi, .. . 
is evidently the product of the probabilities that the systems 

A and B will each fall within the specified limits, viz., 

iithJAJh ^ J J (94) 
e 0 dpi. . . dq^ . . . dq„^. 

We may therefore regard G as an undetermined system of an 

ensemble distributed with the probability-coefficient 

e 0 
(96) 

an ensemble which might be defined as formed by combining 

each system of the first ensemble with each of the second. 

But since ej^ + eg is the energy of the whole system, and 

and yjf g are constants, the probability-coefficient is of the 

general form which we are considering, and the ensemble to 

which it relates is in statistical equilibrium and is canonically 

distributed. 

This result, however, so far as statistical equilibrium is 

concerned, is rather nugatory, since conceiving of separate 

systems as forming a single system does not create any in¬ 

teraction between them, and if the systems combined belong to 

ensembles in statistical equilibrium, to say that the ensemble 

formed by such combinations as we have supposed is in statis¬ 

tical equilibrium, is only to repeat the data in different 
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words. Let us therefore suppose that in forming the system 

C we add certain forces acti)ig between A and Li, and having 

the force-function — The energy of tlie system C is now 

s-tid an ensemble of such systems distributed 

with a density proportional to 

e 0 
(90) 

would be in statistical equilibrium. Comparing this with the 

probability-coefficient of 6' given above (95), we see that if 

we suppose (or rather the variable part of this term when 

we consider all possible configurations of the systems A and B) 

to be infinitely small, the actual distribution in phase of G 

will differ infinitely little from one of statistical ec|uilibrium, 

which is equivalent to saying that its distribution in phase 

will vary infinitely httle even in a time indefinitely prolonged.* 

The case would be entirely different if A and B belonged to 

ensembles having different moduli, say and 0^. 

ability-coefficient of G would then be 

The prob- 

(97) 

which is not approximately proportional to any expression of 
the form (96). 

Before proceeding farther in the investigation of the dis¬ 

tribution in phase which we have called canonical, it will be 

interesting to see whether the properties with respect to 

*■ It will be observed that the above condition relating to the forces wliich 

act between the different systems is entirely analogous to that which must 

hold in the corresponding case in thermodynamics. The most simple test 

of the equality of temperature of two bodies is that they remain in equilib¬ 

rium when brought into thermal contact. Direct thermal contact implies 

molecular forces acting between the bodies. Now the test will fail unless 

the energy of these forces can be neglected in comparison with the other 

energies of the bodies. Thus, in the case of energetic chemical action be¬ 

tween the bodies, or when the number of particles affected by the forces 

acting between the bodies is not negligible in comparison with the whole 

number of particles (as when the bodies have tlie form of exceedingly thin 

sheets), the contact of bodies of the same temperature may produce con¬ 

siderable thermal disturbance, and thus fail to afford a reliable criterion of 

the equality of temperature. 
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statistical equilibrium which have been described are peculiar 

to it, or whether other distributions rnaj^ have analogous 

properties. 
Let 7]' and r)" be the indices of probability in two indepcnd- 

erit ensembles which are each in statistical equilibrium, then 

T]' + -q" will be the index in the ensemble obtained by combin¬ 

ing each system of the first ensemble with each system of the 

second. This third ensemble will of coui'se be in statistical 

equibbiium, and the function of phase q' + q" will 1)0 a con¬ 

stant of motion. Now when infinitesimal forces arc added to 

the compound systems, if q' + q" or a function differing 

infinitesimally from this is still a constant of motion, it must 

be on account of the nature of the forces added, or if their action 

is not entirely specified, on account of conditions to which 

they are subject. Thus, in the case already considered, 

q' -f q" is a function of the energy of the compound system, 

and the infinitesimal forces added are subject to the law of 

conservation of energy. 
Another natural supposition in regard to the added forces 

is that they should be such as not to affect the moments of 

momentum of the compound system. To get a case in which 

moments of momentum of the compound system shall be 

constants of motion, we may imagine material particles con¬ 

tained in two concentric spherical shells, being prevented from 

passing the surfaces bounding the shells by repulsions acting 

always in lines passing through the common centre of the 

shells. Then, if there are no forces acting between particles hi 

different shells, the mass of particles in each shell will have, 

besides its energy, the moments of momentum about three 

axes through the centre as constants of motion. 

Now let us imagine an ensemble formed by distributing in 

phase the system of particles in one shell according to the 

index of probability 

A ^ I ^ I (98) 

where e denotes the energy of the system, and Wj, to^, a>^, its 

three moments of momentum, and the other letters constants. 
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In like manner let us imagine a second ensemble formed by 

distributing in phase the system of particles in the other shell 

according to the index 

6 Uji lUj, 0J3 

' ® til Sis 
(99) 

where the letters have similar significations, and €), Oj, Og 

the same values as in the preceding formula. Each of the 

two ensembles will evidently be in statistical equilibrium, and 

therefore also the ensemble of compound systems obtained by 

combining each system of the first ensemble with each of the 

second. In this third ensemble the index of probabihty will be 

A + A'- 
e + e' , "b , <^2 4“ 

0 
+ 

til 
+ 

S2, ■ + 
OJ3 -h W3 

(100) 

where the four numerators represent functions of phase which 

are constants of motion for the compound systems. 

Now if we add in each system of this third ensemble infini¬ 

tesimal conservative forces of attraction or repulsion between 

particles in different shells, determined by the same law for 

all the systems, the functions coj -f- o', + q>/, and cog -f- Wg' 

will remain constants of motion, and a function differing in¬ 

finitely little from -f- e' will be a constant of motion. It 

would therefore require only an infinitesimal change in the 

distribution in phase of the ensemble of compound systems to 
make it a case of statistical equilibrium. These properties are 

entirely analogous to those of canonical ensembles.* 

Again, if the relations between the forces and the coordinates 

can be expressed by linear equations, there will be certain 

“ normal ” types of vibration of which the actual motion may 

be regarded as composed, and the whole energy may be divided 

^ It would not be possible to omit tlie term relating to energy in the above 

indices, since without this term the condition expressed by equation (89) 
cannot he satisfied. 

The consideration of the above case of statistical equilibrium may be 

made the foundation of the theory of the thermodynamic equilibrium of 

rotating bodies, — a subject w’hich has been treated by Maxwell in his memoir 

“On Boltzmann’s theorem on the average distribution of energy in a system 

of material points.” Cambr. Phil. Trans.j vol. XII, p. 647, (1878). 
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into parts relating separately to vibrations of these tlifferent 

types. These partial energies will be constants of motion, 

and if such a system is distributed according to an index 

which is any function of the partial energies, the ensemble will 

be in statistical equilibrium. Let the index be a linear func¬ 

tion of the partial energies, say 

A 
ei 

01 
(101) 

Let us suppose that we have also a second ensemble com¬ 

posed of systems in which the forces are linear functions of 

the coSrdinates, and distributed in phase according to an index 

which is a linear function of the partial energies relating to 

the normal types of vibration, say 

(102) 

Since the two ensembles are both in statistical equilibrium, 

the ensemble formed by combining each system of the first 

with each system of the second will also be in statistical 

equilibrium. Its distribution in phase wrU. be represented by 

the index 

A + A' — ia _ £l 
©„ ©i' • ■ ■ 

hL (103) 

and the partial energies represented by the numeiutors in the 

formula will be constants of motion of the compound systems 

which form this tlurd ensemble. 

Now if we add to these compound systems infinitesimal 

forces acting between the component systems and subject to 

the same general law as those already existing, viz., that they 

are conservative and linear functions of the coordinates, there 

will still be w -f m types of normal vibration, and n + m 

partial energies which are independent constants of motion. 

If all the original n + m normal types of vibration have differ¬ 

ent periods, the new types of normal vibration will differ infini¬ 

tesimally from the old, and the new partial energies, which are 

constants of motion, will be nearly the same functions of 

phase as the old. Therefore the distribution in phase of the 
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ensemble of compound systems after the addition of the sup¬ 

posed infinitesimal forces will differ infinitesimally from one 

which would be in statistical equilibrium. 

The case is not .so simple when some of the normal types of 

motion have the same periods. In this case the addition of 

infinitesimal forces may completely change the normal types 

of motion. But the sum of the partial energies for all the 

original types of vibration which have any same period, will 

te nearly identical (as a function of phase, i. e., of the coordi¬ 

nates and momenta,) with the sum of the partial energies for 

the normal types of vibration which have the same, or nearly 
the same, period after the addition of the new forces. If, 

therefore, the partial energies in the indices of the first two 

ensembles (101) and (102) whieli relate to types of vibration 

having the same periods, have the same divisors, the same will 

be true of the index (103) of the ensemble of compound sys¬ 

tems, and the distribution represented will differ infinitesimally 

from one which would be in statistical equilibrium after the 

addition of the new forces.* 

The same would be true if in the indices of each of the 

original ensembles we should substitute for the term or terms 

relating to any period which does not occur in the other en¬ 

semble, any function of the total energ}^ related to that period, 

subject only to the general limitation expressed by equation 

(89). But in order that the ensemble of compound systems 

(with the added forces) shall always be approximately in 

statistical equilibrium, it is necessary that the indices of the 

original ensembles should be linear functions of those partial 

energies which relate to vibrations of periods common to the 

two ensembles, and that the coefficients of such partial ener¬ 

gies should be the same in the two indices.f 

* It is interesting to compare the above relations with the laws respecting 

the exchange of energy between bodies by radiation, although the phenomena 

of radiations lie entirely without the scope of the present treatise, in which 

the discussion is limited to systems of a finite number of degrees of freedom. 

t The above may perhaps be sufficiently illustrated by tlic simple case 

where n = 1 in each system. If the periods are different in the two systems, 

they maybe distributed according to any functions of the energies; but if 
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The properties of canonically distributed ensembles of 

systems with respect to the equilibrium of the new ensembles 

which may be formed by combining each system of one en¬ 

semble with each system of another, are therefore not peculiar 

to them in the sense that analogous properties do not belong 

to some other distributions under special limitations in regard 

to the systems and forces considered. Yet the canonical 

distribution evidently constitutes the most simple ease of the 

kind, and that for which the relations described hold with the 

least restrictions. 

Returning to the case of the canonical distribution, we 

shall find other analogies with thermodynamic systems, if we 

suppose, as in the preceding chapters,* that the potential 

energy (e^) depends not only upon the coordinates qi ... 

which determine the configuration of the system, but also 

upon certain coordinates ai, as, etc. of bodies which we call 

external, meaning by this simply that they are not to be re¬ 

garded as forming any part of the system, although their 

positions affect the forces which act on tlie system. The 

forces exerted by the system upon these external bodies will 

be represented by — de^jda^, — de^lda^, etc., while — de^/dq^, 

... — de,jl dqn represent all the forces acting upon the bodies 

of the system, including those which depend upon the position 

of the external bodies, as well as those which depend only 

upon the configuration of the system itself. It will be under¬ 

stood that (p depends only upon qi,... q„, pi,,..p„, in other 

words, that the kinetic energy of the bodies which we call 

external forms no part of the kinetic energy of the system. 

It follows that wc may write 

de _ de, 
dai dui 

(104) 

although a similar equation would not hold for differentiations 

relative to the internal coordinates. 

the periods are the same they must be distributed canonically with same 

modulus in order that the compound ensemble with additional forces may 

be in statistical equilibrium. 

* See especially Chapter I, p. 4. ' 
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We always suppose these external coordinates to have tlie 
same values for all systems of any ensemble. In the ea.se of 
a canonical distribution, i. e., when the index of probability 
of phase is a linear fauetion of the energy, it is e\idciit that 
the value.s of the external coordinates will affect the distiibu- 
tiou, since they affect the energy. In the equation 

e 

All f 

® = J- ■ -J^ ■■ 
phases 

(105) 

by which -\jr may be detennined, the external coordinates, dj, 
ffj, etc., contained implicitly in e, as well as @, are to be re¬ 
garded as constant in the integrations indicated. The equa¬ 
tion indicates that is a function of these constants. If we 
imagine their values varied, and the ensemble distributed 
canonically according to their new values, we have by 
differentiation of the equation 

^ dilf -j- 

X all 

dpi . . . dq^ 

de 

dan 
e ® dpi . . . dq^^ 

-^da, 
@ 

phases 

all 

\J. . .J'^ e ® dpi .. . dq„ — etc., (106) 
phases 

I' 

or, multiplying by ® e®, and setting 

A A etc 

j all if—t 

~ di/; + ^d@ = - d®J'. . .J ee ® dpi ... dq.. 

phases 

aU 

+ daij'. . .jAiO ® dpi - . . dq., 

phases 

all e 

+ da^J". ■ -J A^e ^ dpi . . . dq„ + etc. (107) 
phases 
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Now the average value in the ensemble of any quantity 

(which we shall denote in general by a horizontal line above 

the proper symbol) is decermined by the equation 

. 4- e 

J M 6 ® dpi . . . dq^. (108) 
phases 

Comparing this with the preceding equation, wc have 

dtj/ = ^d® — ~d@ — Ai doi — da^ — etc. (109) 

Or, since = Tf, (110) 

and = -q, (111) 

dill = -fj d& — Ai da-i — A.^ da^ — etc. (112) 

Moreover, since (111) gives 

dip — di — ®dq 7} d®, (113) 

we have also 

de — — ®dr) — Ai doi — A da^ — etc. (114) 

This equation, if we neglect the sign of averages, is identi¬ 

cal in form with the thermodynamic equation 

de + At da-i -f Aq da^ -f etc. 
dq —--, 

or 
de — Tdrf — At detj — A;, da^ — etc.. 

(116) 

(116) 

which expresses the relation between the energy, tempera¬ 

ture, and entropy of a body in thermodynamic equilibrium, 

and the forces which it exerts on external bodies, — a relation 

which is the mathematical expression of the second law of 

thermodynamics for reversible changes. The modulus in the 

statistical equation corresponds to temperature in the thermo¬ 

dynamic equation, and the average index of probability ivith 

its sign reversed corresponds to entropy. Brrt in the thermo¬ 

dynamic equation the entropy (rf) is a quantity which ia 
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only defined by the equation itself, and incompletely defined 

in that the equation only determines its differential, and the 

constant of integration is arbitrary. Cfn the other hand, the 

T) in the stiitistical equation has been completely defined iis 

the average value in a canonical ensemble of systems of 

the logarithm of the coefficient of probability of phase. 

We may also compare equation (112^ with the thermody¬ 

namic equation 

tp = — rjdT — Aidai — A^da-i — uta., (Hf) 

where tfr represents the function obtained by subtracting the 

product of the temperature and entropy from the energy. 

How far, or in what sense, the similarity of these equations 

constitutes any demonstration of the thermodynamic equa¬ 

tions, or accounts for the behavior of material systems, as 

described in the theorems of thermodynamics, is a question 

of which we shall postpone the consideration until we have 

further investigated the properties of an ensemble of systems 

distributed in phase according to the law which we are con¬ 

sidering. The analogies which have been pointed out will at 

least supply the motive for this investigation, which will 

naturally commence with the determination of the average 

values in the ensemble of the most important quantities relating 

to the systems, and to the distribution of the ensemble with 

, respect to the different values of tlie,se quantities. 



CHAPTP-,R V. 

AVEKAGE VALUES lA" A CANONICAL ENSEMBLE 

OF SYSTEMS. 

In the simple but important ease of a system of material 

points, if we use rectangular coordinates, we have for the 

product of the differentials of the coordinates 

dxi dyi dz-i . . . dx^ dy^ dz„ 

and for the product of the differentials of the momenta 

jTOi dx-^ r/ii diji Till dzx . . . dxp dy^ rriy dzy. 

The product of these expressions, which represents an element 

of extension-in-pliase, may be briefly widtten 

mx dxx . . . wiy dzy dxx . . . dzy; 

and the integral 

e ® TOi dxi . . . rtiy dZy dxx . . . dZy (118) 

will represent the probability that a system taken at random 

from an ensemble canonically distributed will fall within any 

given Mmits of phase. 

In this case 

e = + ^mxXi'^ . . . + i My Zy% (119) 

and 
e e, mxXi^ ^yZy^ 

e~& . (120) 

The potential energy (e,) is independent of the velocities, 

and if the Mmits of integration for the coordinates are inde¬ 

pendent of the velocities, and the limits of the several veloci¬ 

ties are independent of each other as well as of the coordinates, 
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the multiple integral may be resolved into the product of 

integrals 

midxi (121) 

This shows that the probability that the configuration lies 

within any given limits is independent of the velocities, 

and that the probability that any component velocity lies 

within any given limits is independent of the other component 

velocities and of the configuration. 

Since 

J' 6 niidxi —'\/2Trm^<A, (122) 

and 

s: ^ nil e 
20 

TOi dXi = Vi rr Wli 0^, (123) 

the average value of the part of the kinetic energy due to the 

velocity Xj, which is expressed by the quotient of these inte¬ 

grals, is I ®. This is true whether the average is taken for 

the whole ensemble or for any particular configuration, 

whether it is taken without reference to the other component 

velocities, or only tliose systems are considered in which the 

other component velocities have particular values or lie 
within specified limits. 

The number of coordinates is 3;/ or n. We have, therefore, 

for the average value of the kinetic energy of a system 

e^ = ^v® — lnQ). (124) 

This is equally true whether we take the average for the whole 

ensemble, or limit the average to a single configuration. 

The distribution of the systems with respect to their com¬ 

ponent velocities follows the ‘ law of errors ’; the probability 

that the value of any component velocity lies within any given 
limits being represented by the value of the corresponding 

integral in (121) for those limits, divided by (2'7rm©)5, 
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which is the value of the same integral for infinite limits. 

Thus the probabiUty that the value of lies between any 
given limits is expressed by 

(125) 

The expression becomes more simple when the velocity is 

expressed with reference to the energy involved. If we set 

the probability that s lies between any given limits is 

expressed by 

ds. (126) 

Here s is the ratio of the component velocity to that which 

would give the energy @; in other words, is the quotient 

of the energy due to the component velocity divided by 

The chstribution with respect to the partial energies due to 

the component velocities is therefore the same for aU the com¬ 

ponent velocities. 

The probabihty that the configuration lies within any given 

limits is expressed by the value of 

(27r@) 2 r. . . Te ® dx,...dx„ (127) 

for those limits, where M denotes the product of all the 

masses. This is derived from (121) by substitution of the 

values of the integrals relating to velocities taken for infinite 

limits. 
Very similar results may be obtained in the general case of 

a conservative system of n degrees of freedom. Since fj, is a 

homogeneous quadratic function of the _p’s, it may be divided 

into parts by the formula 

ep = iP "dp,- 
de^ 

dPn 
(128) 
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where e might be written for in the differential coefficients 

without affecting the signification. The average value of the 

first of these parts, for any given configuration, is expressed 

by the quotient 

Now we have by integration by parts 

/+» fJp /•+ CO — - 

By substitution of this value, the above quotient reduces to 

which is therefore the average value of for the 
^ dpi 

given configuration. Since this value is independent of the 

configuration, it must also be the average for the whole 

ensemble, as might easily be proved directly. (To make 

the preceding proof apply directly to the whole ensemble, we 

liave only to write dp^ . . . dq„ for dpj . . . dp^ in the multiple 

integrals.) Tliis gives ^n& for the average value of the 

whole kinetic energy for any given configuration, or for 

the whole ensemble, as has already been proved in the case of 

material points. 

The mechanical significance of the several parts into which 

the kinetic energy is divided in equation (128) will be appar¬ 

ent if we imagine that by the application of suitable forces 

(different from those derived from and so much greater 

that the latter may be neglected in comparison) the system 

was brought from rest to the state of motion considered, so 

rapidly that the configuration was not sensibly altered during 

the process, and in such a manner also that the ratios of the 

component velocities were constant in the process. If we 
write 

Fidqi. . . + F„dq„ 
4 
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for tlic moment of these foir-es, we have for the pciiod of their 

action by equation (3) 

Pi ■■ 
d'ti 

- 'y " + F, de 

d‘l\ 

The work done by the force -Fj may be evaluated as follows: 

dqi. 

where the Last term may be cancelled because the configuration 

does not vary sensibly during the application of the forces. 

(It will be observed tliat the other terms contain factors which 

increase as the time of the action of the forces is diminished.) 

We have therefore, 

j^Fi dqi =J'piqidt =J'qydp dp (131) 

For since the ^’s are linear functions of the g’s (with coeffi¬ 

cients involving the ^’s) the supposed constancy of the g’s and 

of the ratios of the g'’s will make the ratio /pj constant. 

The last integral is evidently to be taken between the limits 

zero and the value of pj in the phase originally considered, 

and the quantities before the integral sign may be taken as 

relating to that plrase. We have therefore 

jF^dq, = ip,q, = lp,^^. (132) 

That is: the several parts into which the kinetic energy is 

divided in equation (128) represent the amounts of energy 

communicated to the system by the several forces ... F„ 

under the conditions mentioned. 

The following tran.sformation will not only give the value 

of the average kinetic energy, but will also serve to separate 

the distribution of the ensemble in configuration from its dis¬ 

tribution in velocity. 

Since 2 e^, is a homogeneous quadmtic function of the p’s, 

which is incapable of a negative value, it can always be ex¬ 

pressed (and in more than one way) as a sum of squares of 
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linear functions of the p’s.* The coefficients in these linear 

funetiom, like those in the quadratic function, must be regarded 

in the general case as functions of the ^’.s. Let 

2 Ep = • • • + (133) 

where Mj . . . are such linear functions of tlie p’s. If t^'e 

write 
d(Pi ■ • . p,.) 
d{ui , . . 

for the Jacobian or determinant of the differential coefficients 

of the form dpjdu, wc may substitute 

for 

d{p^ 

d(Ui 

■Pn) 
du^ 

■ ■ «„) 

dpj . . . dp„ 

du tl 

under the multiple integral sign in any of our formul®. It 

will be observed that this determinant is function of the j’s 

alone. The sign of such a determinant depends on the rela¬ 

tive order of the variables m the numerator and denominator. 

But since the suffixes of the m’s are only used to distinguish 

these functions from one another, and no esp)ecial relation is 

supposed between a p and a u which have the same suffix, we 

may evidently, without loss of generality, suppose the suffixes 

so applied tliat tire determinant is positive. 

Since the m’s are linear functions of the p’s, when the in¬ 

tegrations are to cover all values of the p’s (for constant q’n) 

once and only once, they must cover all values of the m’s once 

and only once, and the limits will be ± oo for all the it’s. 

Without the supposition of the last paragraph the upper limits 

would not always be -f oo, as is evident on considering the 

effect of changing the sign of a u. But with the supposition 

which we have made (that the deteiminant is always positive) 

we may make the upper limits -I- oo and the lower — co for all 

the u’s. Analogous considerations will apply where the in¬ 

tegrations do not cover all values of the p’s and therefr)re of 

* The reduction requires only the repeated application of the process of 

‘completing the square' used in the solution of quadratic equations. 
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the w’s. The integrals may always be taken from a less to a 

greater value of a u. 

The general integral which expresses the fractional part of 

the ensemble which falls within any given limits of phase is 

thus reduced to the form 

d{ui.. . '«„) 

«i 

e ^ ® dMj.. . du^ dq^.. . dq^. (134) 

For the average value of the part of the kinetic energy 

which is represented by whether the average is taken 

for the whole ensemble, or for a given configuration, we have 

therefore 

4%^ = 

r du^ 
-CD 

-00 

(27r@)i “ 2 ’ 
(135) 

and for the average of the whole kinetic energy, ^n®, as 

before. 
The frEictional part of the ensemble which lies within any 

given hmits of configuration, is found by integrating (134) 

with respect to the m’s from — oo to + oo . This gives 

which shows that the value of the Jacobian is independent of 

the manner in which is divided into a sum of squares. 

We may verify this directly, and at the same time obtain a 

more convenient expression for the Jacobian, as follows. 

It win be observed that since the m’s are hnear functions of 

the p's, and the p’s linear functions of the q’a, the u’s will be 

linear functions of the q's, so that a differential coefficient of 

the form dujdq will be independent of the g’’s, and function of 

the q’s alone. Let us write dpjduy for the general element 

of the Jacobian determinant. We have 
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dpx _ d d( _ d ’■=" dc du, 

du^ du^ dq^ d,u^ r=l du^ d.q^ 

— duN _ d d( _ dUy 

7=1 du, dq^J dq^ du^ dq^ 

Therefore 

d{p, . ■ ■ _ d(u, . . . u„) 

d(u, ...«„) d(q, . . . q„) 

and 

/d(p, ■ ■ ■g„)Y ^ /d(u, ■ ■. tf„)y ^ d{p, ...p„) 

\d(M, .. . u^)) \d{q, . . . qn)) d{q, . .. q^) 

These determinants are all functions of the q"& alone.* The 

last is evidently the Hessian or determinant formed of the 

second differential coefficients of the kinetic energy with re¬ 

spect to Jb. We shall denote it by A j. The reciprocal 

determinant 

d{ii ■ . ■ ?'„) 
diPi ■ ■ ■ Pu)’ 

which is the Hessian of the kinetic energy regarded as fimc- 

tion of the p'&, we shall denote by A^,. 

If we set 

-'k +“ _!P 7 

e ^ = I... I e ^ A/ dp,... dp., 

—00 —00 

+03 —. . ■ —th? n 

20 diH. ..du.,= (27r@)2 (140) 

—oo —«0 

and — — i/-p, (141) 

* It will be observed that the proof of <137) depends on the linear relation 

. dur „ 
between the «’g and q*8, which makes ~p- constant with respect to the differ- 

dqx 

entiations here considered. Compare note on p. 12. 

6g 

(137) 

(138) 
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the fractional part of the ensemble wliicli lies within any 
given limits of configuration (136) may be written 

/•/■ e e dfii (142) 

where the constant may be determined by the condition 
that the integral extended over all configurations has the value 
unity.* 

* In the simple but important case in which Aj is independent of the c/s, 
and a quadratic function of the c/s, if w'e write €« for the least value of 
(or of 6] consistent with the given values of the external coordinates, the 
equation determining tlij may be written 

e ® f'' J ^ ^ 
-00 -CO 

If we denote by q-{, ■ ■ ■ ?»' the values of .. .q„ which give v, its least value 
€o, it is evident that e, — e^ is a homogenous quadratic function of the differ¬ 
ences qi — qi, etc., and that dq^, ... dqn may be regarded as the differentials 
of these differences. The evaluation of this integral is therefore analytically 
similar to that of the integral 

q-fo -{-05 _ 

/■■■/'> ^ dpi -. . dp„, 

for which we have found the value L 
by analogy, we get 

-i {27r0) 5. By the same method, or 

= 0)' 
(2x0)t 

where is the Hessian of the potential energy as function of the /s. It 
will be observed that Aq depends on the forces of the system and is independ¬ 
ent of the masses, while Aq or its reciprocal Ap depends on the masses and 
is independent of the forces. While each Hessian depends on the system of 
coordinates employed, the ratio Aq/A^ is the same for all systems. 

Multiplying the last equation by (140), we have 

For the average value of the potential energy, we have 

+00 +CO 

y* • ■ -y’(e?-Eo)' c/(/i . . . dq„ 

€q — fa — 
+03 +« 
/.../«■ dqi. . . dqn 
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When an ensemble of systems is distributed in configura¬ 

tion in the manner indicated in Lliis formula, i. e., when its 

distribution in configuration is tire same as that of an en¬ 

semble canonically distributed in phase, we shall say, without 

any reference to its velocities, that it is canonically distributed 

in confiyuration. 

For any given configuration, the fractional part of the 

systems which lie within any given limits of velocity is 

represented by the quotient of the multiple integral 

J. . .Je 0dpi. . . dp„, 

or its equivalent 

/■■■/ 

2e . . . du„, 

taken within those limits divided by the value of the same 

integral for the Umits ± oo. But the value of the second 

multiple integral for the limits ± oo is evidently 

A/(27r&)2. 

We may therefore write 

(143) 

The evaluation of this expression is similar to that of 

4-co -}-co _ 

/.../ epC ® dpi . . . dpn 

— 

-|-00 4*® _ 

y*. ..y'e ^dpi...dp„ 

which expresses the average value of the kinetic energy, and for which we 

have found the value | n 0- We have accordingly 

tq — fa “ 2 ” 

Adding the equation 
V- 1 
fp — 2 ^ 

t — (a ~ n 9, we have 
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or (144) 

or again J. . ® . . . dq^j (145) 

for the fractional part of the systems of any given configura¬ 

tion which lie within given limits of velocity. 

When systems are distributed in velocity according to these 

formulae, i. e., when the distribution in velocity is like that in 

an ensemble which is canonically distributed in phase, we 

shall say that they are canonically dutriluted in velocity. 

The fractional part of the whole ensemble which falls 

within any given limits of phase, which we have before 

expressed in the form 

dpi . . . dp^dqi . . . dqn, 
may also be expressed in the form 

(146) 

Ajdgl . , . dq^dq^ . . . dq^. (147) 



CHAPTER VI. 

EXTENSION IN CONFIGURATION AND EXTENSION 

IN VELOCITY. 

The fonnulae relating to canonical ensembles in the closing 

paragraphs of the last chapter suggest certain general notions 

and principles, which we shall consider in this chapter, and 

which are not at aU limited in their application to the canon¬ 

ical law of distribution.* 

We have seen in Chapter IV. that the nature of the distribu¬ 

tion which we have called canonical is independent of the 

system of coHrdinates by which it is described, being deter¬ 

mined entirely by the modulus. It follows that the value 

represented by the multiple integral (142), which is the frac¬ 

tional part of the ensemble which lies within certain limiting 

configurations, is independent of the system of coordinates, 

being determined entirely by the hmiting configurations with 

the modulus. Now as we have already seen, represents 

a value which is independent of the system of coordinates 

by which it is defined. The same is evidently true of 

by equation (140), and therefore, by (141), of 

Hence the exponential factor in the multiple integral (142) 

represents a value which is independent of the system of 

coordinates. It follows that the value of a multiple integral 
of the form 

(148) 

* These notions and principles are in fact such as a more logical arrange¬ 

ment of the subject would place in connection with those of Chapter I., to 

which they are closely related. The strict requirements of logical order 

hare been sacrificed to the natural development of the subject, and very 

elementary notions hare been left until they have presented themselves in 

the study of the leading problems. 
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is independent of the system of coordinates which is employed 

for its evaluation, as will appear at once, if we suppose the 

multiple integral to be broken up into parts so small that 

the exponential factor may be regarded as constant in each. 

In the same way the formulae (144) and (145) which express 

the probability that a system (in a canonical ensemble) of given 

configuration will fall within certain limits of velocity, show 

that multiple integrals of the form 

(149) 

/ ■/ A, dq^. . . dq^ (150) 

relating to velocities possible for a given configuration, when 

the limits are formed by given velocities, have values inde¬ 

pendent of the system of coordinates employed. 

These relations may easily be verified directly. It has al¬ 

ready been proved that 

d(P,, ■.. P„) _ d{q^ . . . g'„) _ d(^i, ...?„) 

d(j>x,.-.Prd d(Qi,...Q„) d{Qi,...Q,) 

where ... q„‘P\i • •-Vn and , ... Pj, ,.. are two 
systems of coordinates and momenta.* It follows that 

= r,. r/^d(pi,...p„)Y/d(p„...p„)\...gju 
dQi...dQ„ 

=/••■/( 

d(Pi, ...P„) 

d{Qr, ...(in) 
dQi... dQn, 

* See equation (20). 
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and 

r... 4) y dp^... p„ 
j J\d{p^,...p,:}) 

d/>i ■ ■ - dp^ 
^d(Pi, .. . P„) J d{pi,...2\) 

_ C rfdiQu-Qn)\h(d{P^, ..■P,d\lfd(!/u ■ ■ •?„) VI , 
J "J [d(P„...P„)J {d(p^,...p„)J [d(CA,...Q„jJ 

The multiple iutegral 

f...fdp 1 . . . dp)„dqi . . . c^g',.) (161) 

which may also be written 

j'- ■ ■J'^id'h ■ ■ ■ . . . dq„, (152) 

and which, when taken within any given hmits of phase, has 

been shown to have a value independent of the coordinates 

employed, expresses what we have called an extensioti-in- 

phase.* In like manner we may say that the multiple integral 

(148) expresses an extemion-in-oonfiguration, and that the 

multiple integrals (149) and (150) express an extensionrinr 

velocity. We have called 

dpi . . . dp^dq.^ . . . dq^, (153) 

which is equivalent to 

A,(^gi . . . .. . dq^, (154) 

an element of extension-in-phase. Wc may call 

X^dq^. .. dq, (155) 

an element of extension-in-configuration, and 

is,^dp,. , . dp,, (156) 

* See Chapter I, p. 10. 
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or its equivalent 

N^dq-i, . . .dq^, (157) 

an element of extension-in-velocity. 

An extension-in-phase may always be regarded as an integral 

of elementaiy extensions-in-configuration multiplied each by 

an extension-in-velocity. This is evident from the formulae 

(151) and (152) which express an extension-in-phase, if we 

imagine the integrations relative to velocity to be first carried 

out. 
The product of the two expressions for an element of 

extension-in-velocity (149) and (150) is evidently of the same 

dimensions as the product 

pi - ■ ■ p„ii ■ • • 

that is, as the mth power of energy, since every product of the 

form has the dimensions of energy. Therefore an exten¬ 

sion-in-velocity has the dimensions of the square root of the 

wth power of energy. Again we see by (155) and (156) that 

the product of an extension-in-conflguration and an extension- 

in-veloeity have the dimensions of the wth power of energy 

multiplied by the wth power of time. Therefore an extension- 

in-configuration has the dimensions of the »th power of time 

multiplied by the square root of the nth power of energy. 

To the notion of extension-in-configuration there attach 

themselves certain other notions analogous to those which have 

presented themselves in connection with the notion of ex¬ 

tension-in-phase. The number of systems of any ensemble 

(whether distributed canonically or in any other manner) 

which are contained in an element of extension-in-configura^ 

tion, divided by the nmnerical value of that element, may be 

called the dewsity-ivr-conjiguration. That is, if a certain con¬ 

figuration is specified by the coordinates qi - • ■ 9'„, and the 
number of systems of which the coordinates fall between the 

limits and -fi dq-^ )•••?, and -fi dq^ is expressed by 

D,l^}dqi . . .dq^, (168) 
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Dq will be the density-in-configuration. And if we set 

= (159) 

where N denotes, as usual, the total number of systems in the 

ensemble, the probability that an unspecified system of the 

ensemble will fall within the given limits of configuration, is 

expressed by 

. . . dq„. (160) 

We may call e'® the coefficient of prohability of the configura,- 

tion, and the index of prohability of the configuration. 

The fractional part of the whole number of systems w'hich 

are within any given limits of configuration will be expressed 

by the multiple integral 

S" S 
The value of this integral (taken within any given configura¬ 

tions) is therefore independent of the system of coordinates 

which is used. Since tlie same has been proved of the same 

integral without the factor e^i, it follows that the values of 

and Dg for a given configuration in a given ensemble are 

independent of the system of coordinates which is used. 

The notion of extension-in-velocity relates to systems hav¬ 

ing the same configuration.* If an ensemble is distributed 

both in configui-ation and in velocity, we may confine our 

attention to those systems which are contained wdthin certain 

infinitesimal limits of configuration, and compare the whole 

number of such systems with those which are also contained 

* Except in some simple cases, such as a system of material points, we 

cannot compare velocities in one configuration with velocities in another, and 

speak of their identity or difference except in a sense entirely artificial. We 

may indeed say that we call the velocities in one configuration the same as 

those in another when the quantities gi, .. .qn have the same values in the 

two cases. But this signifies nothing until the system of coordinates has 

been defined. We might identify the velocities in the two cases which make 

the quantities pi,.. .pn the same in each. Tliis again would signify nothing 

independently of the system of coordinates employed. 
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withia certain infinitesimal limits of velocity. The second 

of these numbers divided by the first expresses the probability 
that a system which is only specified as falling within the in¬ 

finitesimal limits of configuration shall also fall within the 

infinitesimal limits of velocity- If the limits with respect to 

velocity are expressed by the condition that the momenta 

shall fall between the limits pj and pj + dp,, .. . p„ and 

p„ -I (ip„, the extension-in-velocity within those limits will be 

. . . dp„, 

and we may express the probability in question by 

. . . dp„. (162) 

This may be regarded as defining Pp. 

The probability^ that a system which is only specified as 

having a configuration within certain infinitesimal limits shall 

also fall within any given limits of velocity wdl be expressed 

by the multiple integral 

.dp,, (163) 

or its equivalent 

f"f s’”■ ■ ■ dq„ (164) 

taken within the given limits. 

It follows that the probability that the system will faU 

within the limits of velocity, and and 

q, + is expressed by 

. .dq,. (165) 

The value of the integrals (163), (164) is independent of 

the sy-stem of coordinates and momenta which is used, as is 

also the value of the same integrals without the factor 

e’r; therefore the value of must be independent of the 

system of coordinates and momenta. We may call A the 

coefficient of prohahility of velocity, and the index of prdha- 

iility of velocity. 
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Comparing (160) and (162) with (40), we get 

= P = e” (160) 

or V<i + Vp — V- (167) 

That is : the product of the coefficients of probability of con- 

figui'ation and of velocity is equal to the coefficient of probar 

bility of phase; the sum of the indices of probability of 
configuration and of velocity is equal to the index of 

probability of phase. 

It is evident that and e'p have the dimensions of the 

reciprocals of extension-in-configuration and extension-in¬ 

velocity respectively, i. e., the dimensions of and 

where t represent any time, and e any energy. If, therefore, 

the unit of time is multiplied by c^, and the unit of energy by 

c,, every will be increased by the addition of 

n log Cl + log Cj, (166) 

and every 7?^, by the addition of 

^nlogc,.* (169) 

It should be observed that the quantities which have been 

called extemio7i-m-eonflffuration and extenmon-in-vdoeity are 

not, as the terms might seem to imply, purely geometrical or 

kinematical conceptions. To express their nature more fully, 

they might appropriately have been called, respectively, the 

dynamical measure of the extension in configuration, and'the 

dynamical meamre of the extension in velocity. They depend 

upon the masses, although not upon the forces of the 

system. In the simple case of material points, where each 

point is limited to a given space, the extension-in-configui-ation 

is the product of the volumes within which the several points 

are confined (these may be the same or different), multiplied 

by the square root of the cube of the product of the masses of 

the several points. The extension-in-velocity for such systems 

is most easily defined as the extension-in-confignration of 

systems which have moved from the same configuration for 

the unit of time with the given velocities. 

* Compare (47) in Chapter I. 
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In the general case, the notions of extension-in-eonfiguration 

and extension-in-velocity may be connected as follows. 

If an ensemble of similar systems of n degrees of freedom 

have the same configuration at a given instant, but are distrib¬ 

uted throughout any finite extension-in-velocity, the same 

ensemble after an infinitesimal interval of time U will be 

distributed throughout an extension in configuration equal to 

its original extension-in-velocity multiplied by Sr. 

In demonstrating this theorem, we shall write for 

the initial values of the coordinates. The final values will 

evidently be oonneoted with the initial by the equations 

qi — 2i' == 2'»' = (ITO) 

Now the original extension-in-velocity is by definition repre¬ 

sented by the integral 

S 'S 
where the limits may be expressed by an equation of the form 

J’(yi,...j„)=:0. (172) 

The same integral multiplied by the constant Sr may be 

written 

j'-'j (173) 

and the limits may be written 

^(?i.. • ?») = /(?'i • • • Qn St) = 0. (174) 

(It will be observed that S^ as well as is constant in the 

integrations.) Now this integral is identically equal to 

J.. .JCi.,^d{qi — qj) . . . d(q„ .. . q„'), (176) 

or its eqmvalent 

f ■ ■• • • ‘^5"' 

with limits expressed by the equation 

J (3i - - ?»') = 0- (177) 
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But the systems which initially had velocities satisfying the 

equation (172) will after the interval 6^ have configurations 

satisfying equation (177). Therefore the exteusioii-in-con- 

figuration represented by the last integral is that which 

belongs to the systems which originally had the extension-in¬ 

velocity represented by the integral (171). 

Since the quantities which we have called extenslons-in- 

phase, extensions-in-configuration, and exLensions-in-velocity 

are independent of the natui'e of the system of coordinates 

used in their definitions, it is natural to seek definitions which 

shall be independent of the use of any coordinates. It will be 

sufficient to give the following definitions without formal proof 

of their equivalence with those given above, since tliey are 

less convenient for use than those founded on systems of co¬ 

ordinates, and since we shall in fact have no occasion to u.se 

them. 

We commence -with the definition of extension-in-velocity. 

We may imagine n independent velocities, Fj,... V„ol wMch a 

system in a given configuration is capable. We may conceive 

of the system as having a certain velocity F(, combined with a 

part of each of these velocities Fj... V^. By a part of i.s 

meant a velocity of the same nature as Fj but in amount being 

anything between zero and Vy Now all the velocities whicli 

may be thus described may be regarded as forming or lying in 

a certain extension of which we desire a measure. The ca.se 

is greatly simplified if we suppose that certain relations exi.st 

between the velocities Fj,... viz : that the Idnetie energy 

due to any two of these velocities combined is the sum of the 

kinetic energies due to the velocities separately. In this case 

the extensiou-in-motion is the square root of the product of 

the doubled kinetic energies due to the n velocities Fj,... F„ 

taken separately. 

The more general case may be reduced to this simpler ease 

as follows. The velocity V2 may always be regarded as 

composed of two velocities and of which 7^' is of 

the same nature as Fj, (it may be more or less in amount, or 

opposite in sign,) while F^" satisfies the relation that the 
6 
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kinetic energy due to and F^" combined is the sum of tbe 

kinetic eiiei'gies due to these velocities taken separately. And 

the velocity may be regarded as compounded of three, 

T-’ij', P^g", Fg'", of which V^' is of the same nature as V■^, Fg" 

of the same nature as F/', while V^'" sati.sfies the relations 

that if combined either with Fj or F^" the kinetic energy of 

the combined velocities is the sum of the kinetic energies of 

the velocities taken separately. When all the velocities 

Fg,... F„ have been tlius decomposed, the square root of the 

product of the doubled kinetic energies of the several velocities 

Fj, Fg", Fg"', etc., win be the value of the extension-in¬ 

velocity which is sought. 

This method of evaluation of the extension-in-velocity which 

we are considering is perhaps the most simple and natural, but 

the result may be expressed in a more symmetrical form. Let 

us write ej.g for the kinetic energy of the velocities Fj and Fg 

combined, diminished by the sum of the kinetic energies due 

to the same velocities taken separately. This may be called 

the mutual energy of the velocities Fj and Fg. Let the 

mutual energy of every pair of the velocities Fj,... V„ be 

expressed in the same way. Analogy would make Sjj represent 

the energy of twice F^ diminished by twice the energy of F^, 

i. e., eji would represent twice the energy of V\, although the 

term mutual energy is hardly appropriate to this case. At all 

events, let ejj have this signification, and egg represent twice 

the energy of F^, etc. The square root of the determinant 

£ii £12 • • • £ln 

€21 €22 . . . €2„ 

e„l 6„2 • • • ^nn 

represents the value of the extension-in-velocity determined as 

above described by the velocities Fj,... V^. 

The statements of the preceding paragraph may be readily 

proved from the expression (157) on page 60, viz., 

dqi. . . dq^ 

by which the notion of an element of extension-in-velocity was 
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originally defined. Since A;^ in this expression represents 

the deteiminant of which the general element is 

d\ 

dq.dqj 

the square of the preceding expression represents the determi¬ 

nant of wliich the general element is 

cPe . . 

Now we may regard the differentials of velocity dq^, d'qj aa 

themselves infinitesimal velocities. Then the last expression 

represents the mutual energj" of these velocities, and 

represents twice the energy due to the velocity dqi. 

The case which we have considered is an extension-in-veloc¬ 

ity of the simplest form. All extensions-in-velocity do not 

have this form, but all may be regarded as composed of 

elementary extensions of this form, in the same manner as 

all volumes may be regarded as composed of elementary 

parallelepipeds. 

Having thus a measure of extension-in-veloeity founded, it 

will be observed, on the dynamical notion of kinetic energy, 

and not involving an explicit mention of eooidinates, we may 

derive from it a meassure of extension-in-configuration by the 

principle connecting the.se quantities which has been given in 

a preceding paragraph of this chapter. 

The measure of extension-iu-phase may be obtained from 

that of extension-in-configuration and of extension-in-volocity. 

For to every configuration in an extension-in-phase there will 

belong a certain extension-in-velocity, and the integral of the 

elements of extension-in-configuration within any extension- 

in-phase multiplied each by its extension-in-velocity is the 

measure of the extension-in-phase. 



CHAPTER VII. 

FARTHER DISCUSSION OF AVERAGES IN A CANONICAL 

ENSEMBLE OF SYSTEMS. 

RETURNmG to the case of a canonical distribution, we have 

for the index of probability of configuration 

_ l/', — E, 
(178) 

v:/ 

a.s appears on comparivson of formulae (142) and (161). It 

follows immediately from (142) that the average value in the 

ensemble of any tpiantity u which depends on the configurar 

tion alone is given by the formula 

aU 

u=J...Jue ® A-i dfj, . . . dq„, (179) 

config. 

where the integrations cover aU possible configurations. The 

value of 1^5 is evidently determined by the equation 

Jk r. “U p 

...Je . . . dq„. 

cou5g. 

(180) 

By differentiating the last equation we may obtain results 

analogous to those obtained in Chapter IV from the equation 

i) ^ 

e ® =J. . .J 6 .. . dq„. 

pliasea 

As the process is ideiitical, it is sufficient to give the results : 

difr^ = 7i^d® — A^da^ — A^da^ — etc., (181) 
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or, since 

1 -b 
1 II (182) 

and dij/^ — -f rjgdOi) -f (^idrjg, (18.3) 

de^ ~ — ®dY}g — Aidai ~ A.2do.2 — etc. (184) 

It appears from tliis equation that the differential relations 

subsisting between the average potential energy in an ensem¬ 

ble of systems canonically distributed, the modulus of distri¬ 

bution, the average index of probability of configuration, taken 

negatively, and the average forces exerted on external bodies, 

are equivalent to those enunciated by Clausius for the potential 

energy of a body, its temperature, a quantity which he called 

the disgregation, and tlie forces exerted on external bodies.* 

For the index of probability of velocity, in the ease of ca¬ 

nonical distribution, we have by comparison of (144} and (163). 

or of (145) and (164), 

@ 
(185) 

which gives 
- — £p 
’JP - (y > (186) 

we have also (187) 

and by (140), 'Pp = — in® log (27r0). (188) 

From these equations we get by differentiation 

= Vp (189) 

and dfp = — © dr)„. (190) 

The differential relation expressed in this equation between 

the average kinetic energy, the modulus, and the average index 

of probability of velocity, taken negatively, is identical with 

that given by Clausius locis citatis for the kinetic energy of a 

body, the temperature, and a quantity which lie called the 

transformation-value of the kinetic energy.) The relations 

' = V = Vr, + Vp 

* Pogg. Ann., Bd. CXVT, S. 73, (1862); ibid., Bd. CXXV, S. .353, (1865). 

See also Boltzmann, Sitzb. der Wiener Akad., Bd. LXIII, S. 728, (1871J. 

t Verwandlungswerth des Warmoinhaltes. 
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are also identical with those given by Clausius for the corre¬ 

sponding quantities. 

Equations (112) and (181) show that if or ■xjf^ is known 

as function of 0 and a^, a,j, etc., we can obtain by differentia¬ 

tion e or e,, and A.^, etc. as functions of the same varia¬ 

bles. We have in fact 

(191) 

= '/'a — ® % = 

The corresponding equation relating to kinetic energy, 

dij/p 

^p = 'l'p-®Vp==<l'p — ®d@‘ 
(193) 

which may be obtained in the same way, may be verified by 

the known relations (186), (187), and (188) between the 

variables. We have also 

dxj/ dlpq 
(194) 

etc., so that the average values of the external forces may be 

derived ahke from or from 

The average values of the squares or higher powers of the 

energies (total, potential, or kinetic) may easily be obtained by 

repeated differentiations of i/tj,, or e, e,, e^, with 

respect to By equation (108) we have 

aU 4'“^ 

« = J*. . ■J'ie ^ dpi . . . dq^, 

phases 

and differentiating with respect to 0, 

^ all ^ 

:-/■/( 
de 
5® 

all 

phases 

(195) 

• (196) 

whence, again by (108), 

de p — lie e dll/ 



ENSEMBLE OF SYSTEMS. T1 

Since this value is independent of the configuration, wo see 

that the average square of the kinetic energy for every configu¬ 

ration is the same, and therefore the same as for the whole 

ensemble. Hence ^ may be interpreted as the average either 

for any particular configuration, or for the whole ensemble. 

It will be observed that the value of this quantity is deter¬ 

mined entirely by the modulus and the number of degrees of 

freedom of the system, and is in other respects independent of 
the nature of the system. 

Of especial importance are the anomalies of the energies, or 

their deviations from their average values. The average value 
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of these anomalies is of course zero. The natural measure of 

such anomalies is the square root of their average square. Now 

-2 

— ‘ ) 

identically. Accordingly 

(e 
a& 

. @S 

d(!f' 

In like manner, 

: 

40' 
.03 

d0‘‘' 

(204) 

(206) 

(206) 

Hence 

dVp. 

(e — = (^4 — + («!> — 

(207) 

(208) 

Equation (206) shows that the value of de^/df> can never be 

negative, and that the value of d^-\lr^/d&^ or dtj^/dfi can never 

be positive.* 

To get an idea of the order of magnitude of these quantities, 

we may use the average kinetic energy as a term of comparison, 

this quantity being independent of the arbitrary constant in¬ 

volved in the definition of the potential energy. Since 

* In the case discussed in the note on page 54, in which the potential 

energy is a quadratic function of the ij’s, and A, independent of the q’a, we 

should get for the potential energy 

and for the total energy _ 

(s - ;)2 = n02. 

We may also write in this case, 

(f^—60)^ n 

(e-e)^ _1_ 

(e — Ed)* n 
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(gg _ 2 

? « de, 
(6-7/ _2cS_2_^2^. 

7/ “ » « d/p 

(209) 

(210) 

(211) 

These equations show that when the number of degrees of 

freedom of the systems is very great, the mean squares of the 

anomalies of the energies (total, potential, and kinetic) are very 

small in comparison with the mean square of the kinetic 

energy, unless indeed the differential coefficient de^/de^, is 

of the same order of magnitude as n. Such values of 

can only occur within intervals (ej' — e^,') which are of the or¬ 

der of magnitude of nr^, unless it be in cases in which is in 

general of an order of magnitude higher than Postponing 

for the moment the consideration of such cases, it will be in¬ 

teresting to examine more closely the case of large values of 

within narrow limits. Let us suppose that for ej and 

7/' the value of de, is of the order of magnitude of unity, 

but between these values of very great values of the differ¬ 

ential coefficient occur. Then in the ensemble having modulus 

®" and average energies e/' and ej’, values of e, sensibly greater 

than ej" will be so rare that we may call them practically neg¬ 

ligible. They will be still more rare in an ensemble of less 

modulus. For if we differentiate the equation 

regarding 

we get 

Cj as constant, but ® and therefore as variable. 

® d® ’ 
(212) 

(213) 

whence by (192) 
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Tliat is, a diminution of the modulus will diminish the prolm- 

hility of all configurations for which the potential energy exceeds 

its average value in the ensemble. Again, in the en.semble 

having modulus 0' and average energies and e^', values of 

Sj sensibly less than c^' will be so rare as to be practically neg¬ 

ligible. They will be still more rare in an ensemble of greater 

modulus, since by the same equation an increase of the 

modulus will diminish the probability of configurations for 

which the potential energy is less than its average value in 

the ensemble. Therefore, for values of @ between 0' and 0", 

and of between and the individual values of will 

be practically limited to the interval betw'een e,' and ij''. 

In the cases which remain to be considered, viz., when 

has very large values not confined to narrow limits, 

and consequently the differences of the mean potential ener¬ 

gies in ensembles of different moduli are in general very large 

compared with the differences of the mean kinetic energies, it 

appears by (210) that the anomalies of mean square of poten¬ 

tial energy, if not small in comparison with the mean kinetic 

energy, will yet in general be very small in comparison with 

differences of mean potential energy in ensembles having 

moderate differences of mean kinetic energy, — the exceptions 

being of the same character as described for the case when 

/cfep is not in general large. 

It follows that to human experience and observation with 

respect to such an ensemble as we are considering, or with 

respect to systems which may be regarded as taken at random 

from such an ensemble, when the number of degrees of free¬ 

dom is of such order of magnitude as the number of molecules 

in the bodies subject to our observation and experiment, e —e, 

ej> — 6p, — ej would be iu general vanishing quantities, 

since such experience would not be wide enough to embrace 

the more considerable divergencies from the mean value.?, and 

such observation not nice enough to distinguish the ordinary 

divergencies. In other words, such ensembles would appear 

to human observation as ensembles of systems of uniform 

energy, and in which the potential and kinetic energies (sup- 
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posing that there were means of measuring these quantities 

separately) had each separately uniform values.* Exeeption.s 

miglrt occur when for particular values of the modulus the 

differential coefficient de^ldlp hikes a very large value. To 

human observation the effect would be, that in ensembles in 

which 0 and had certain critical values, e, would 1x3 in¬ 

determinate within certain limits, viz., the values which would 

correspond to values of 0 and slightly less and slightly 

greater than the critical values. Such indetenninateness cor¬ 

responds precisely to what we observe in experiments on the 

bodies which nature presents to us.f 

To obtain general formulae for the average values of powers 

of the energies, we may proceed as follows. If h is any posi¬ 

tive whole number, we have identically 

all e 

pliaaes 

all e 

phases 

(214) 

i. e., by (108), 

•f' , 'P 

d®\ ) 
(215) 

Hence (216) 

and (217) 

* This implies that the kinetic and potential energies of individual systems 

would each separately have values sensibly constant in time. 

t As an example, we may take a system consisting of a fluid in a cylinder 

under a weighted piston, with a vacuum between the piston and the top of 

the cylinder, which is closed. The weighted piston is to be regarded as a 

part of the system. (This is formally necessary in order to satisfy the con¬ 

dition of the invanabiUty of the external coordinates,) It is evident that at 

a certain temperature, viz., when the pressure of saturated vapor balances 

the weight of the piston, there is an indeterminateness in the values of the 

potential and total energies as functions of the temperature. 
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For li = 1, this gives 

which agrees with (191). 

From (215) we have also 

In like manner from the identical equation 

all 

/ 
all 

conflg. conflg. 

tv J \ A _tl. 

we get 

/- d - 
and 

® dq^, 

(221) 

(222) 

(22.3) 

With respect to the kinetic energy similar equations will 

hold for averages taken for any particular configuration, or 

for the whole ensemble. But since 

i =-0, 
r 2 

the, equation 

^ - (fp + d©) ' (224) 

reduces to 

5*= (1 ®+■« -1) ^ “ i (i ® 
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We have therefore 

T(hn + h) 

<=»> - r(i7t) • ^ 

The average values of the powers of the anomalies of the 

energies are perhaps most easily found as follows. We have 

identically, since e is a function of 0, while e is a function of 

the p’s and g’s, 

oil ( 

phases 

““ r -”1-- 
-dq„ (229) 

i. e., by (108), 

d r--^“1 
e (c _ i)^ 02 . e a (230) 

* In the case discussed in the note on page 54 we may easily get 

(eg — Ca)* — ^€-2 — ea + ^ €3 - 

which, with — €a — o ®> 

- /n (1 \ - n / It (I \*—1 

(2-0 + 0=,7^} (^, ~ = 2(2 0 + 0*ye) ®' 

{€q — €a)^ = e/A 

(« — ta)'‘ - + 0'^ d&') * ‘ ~ 

€ ~ €a = n 0 

-—— / d \ _ / ^ \ 
(t - €„p = (^n0 + j (e - e»)‘--* = n(^!i0+ ®%7^j 

-P T(r,+h] , 

=“r{,rr®- 
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or since by (218) 

d® 

d® ~ + (e - £)* i = e (e - — h (e — 0" 

de --- -Z.— -- u-c /oo^^ 

(e — ^ (e— 6)* + /i (e — ef (231j 

In precisely the same way we may obtain for the potential 

energy 

(e, - e,)^‘ = ^ (e^ - ^ (e, - 

By successive applications of (231) we obtain 

(e — = De 

\€-ey=rD^e 

(e - ey :^jy<~e +3 {D~ey 

(e - e)6 = D^e + IQBeD^e 

(e - e)‘ = 2)56 + 152)62)®e + 10 + 15 (De)® etc. 

where 2> represents the operator 2/20. Similar expres¬ 

sions relating to the potential energy may be derived from 
(232). 

For the kinetic energy we may write similar equations in 

which the averages may be taken either for a single configura^ 

tion or for the whole ensemble. But since 

dep n 

2 

the general formula reduces to 

^ (€p-q,)* + iaA®® (233) 

or 

(ep — €^)*+* _ ^ (ep — gj>)* ^ (gp - gf)* ^ (e^ — €p)*~® 

ip*+i n d® n n 

(234) 
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But since identically 

(e - e) 

the value of the con-esponding expression for any index will 

be independent of 0 and the formula reduces to 

2h 

we have therefore 

=r 0, 

‘^^y y. _(235) 

(^p~ _ A 

\ y “ 

It will be observed that when or e is given as function of 

all averages of the form ? or (€ — e)'" are thereby deter- 

* In the case discussed in the preceding foot-notes we get easily 

{^q—^qY — {^P - ^p)\ 

and = 
' •” Ca' ' ' 

For the total energy we have in this case 

/ e — f a / €~€\'^_j^Ay'€ — € 

\€ — ea/ ^Ve — fa' nVf — fa' 

/e —TnS 1 3 6 
(fn:)-1 (=-..)-s+ji- 

\t — e„/ n* 
etc. 
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mined. So also if or ~e^ is given as function of ©, all 

averages of the form or (e^ — Sj)* are detcnniued. But 

e, = i — in&. 

Therefore if any one of the quantities e, is known 

as function of ©, and » is also known, all averages of any of 

the forms mentioned are thereby determined as functions of 

the same variable. In any case all averages of the form 

are known in terms of n alone, and have the same value 
whether taken for the whole ensemble or limited to any 

particular configuration. 

If we differentiate the equation 

tzl J ' ' 'J ^ ^ dpi . . . dq„ = 1 (236) 

with respect to a^, and multiply by ©, we have 

e ^ dpi. . . dq,^ = 0. (237) 

Differentiating again, with respect to a^, with respect to a^, 

and with respect to ©, we have 

j-m 
%J tj I 

dai^ @\dai 

d^e 1 
(L(Z\ (La^ © 

—I 4'“^ 

(238) 

/ \ ~1 
\dai dai J \da^ da^) J 

4—f 

e ® . . . Jy, = 0, (239) 

( ^ 
l/r — 

5^J\©d0 ^ Jj 

e ® dpi . . . clq^ = 0. (240) 
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The multiple integnils in the last four equations represent the 

average values of the expressions in the bi'ackets, wliich wu 

may therefore set equal to zero. The first gives 

dt^i de 

(la, da, 
(241) 

as already obtained. With this relation and (191) we get 

from the other equations 

■IN N \ 
= © 

fdh (TaA 
(242) 

daO ~ daO) dtix da,) 

( N dv \ 
y dax da>> da J _ 
' dA, C?di\ ( dA^ M0\ 

da^ cfaj ) = © 
efaj 

(243) 

= — ©2 = @2 1 II 1 1 -©^|i, 
da 1 d& d© d(tx 

We may add for comparison equation (205), which might be 

derived from (236) by differentiating twice with respect to 0 : 

(e - £)' = — ©‘ 

d@^~ d@' 
(244) 

The two last equations give 

-dA- 
{A, - AO (6 - i) = ^(e - s)». (245) 

de 

If or € is known as function of 0, a-j, etc., (e — e)^ may 

be obtained by differentiation as function of the same variables. 

And if or or y is known as function of 0, r/j, etc., 

(A^ — ^j) (e — e) may be obtained by differentiation. But 

(Aj — A^y and (Aj—Aj)(A2 — A.j) cannot be obtained in any 

similar manner. We have seen that (« —i)^ is in general a 

vanishing quantity for very great values of n, which w’e may 

regard as contained implicitly in 0 as a divisor. The same is 

true of (Aj, — Aj) (e — e}. It does not appear that we can 

assert the same of (A,^ — A^y or (Aj^ — A^ (A^ — A^'), since 
6 
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(PUda^ may be very great. The quantities (Pejda^^ and (P'^jda^ 

belong to the ehis.s called elasticities. The former expre.s.sion 

represents an elasticity measured under the condition that 

while is varied the internal coordinates ... q„ all remain 

fixed. The hitter is an elasticity measured under the condi¬ 

tion that when a-^ is varied the ensemble remains canonically 

distributed within the same modulus. This corresponds to 

an elasticity in physics measured under the condition of con¬ 

stant temperature. It is evident that the former is greater 

than the latter, and it may be enormously greater. 

The divergences of the force from its average value are 

due in part to the differences of energy in the systems of tlie 

ensemble, and in part to the differences in the value of 

the forces which exist in systems of the same energy. If we 

write for the average value ot A ^ in systems of the 

ensemble which have any same energy, it will be determined 

by the equation 

where the limits of integration in both multiple integrals are 

two values of the energy which differ infinitely little, say e and 

fcf 
e -1- de. This will make the factor e ® constant within the 

limits of integration, and it may bo cancelled in the numerar 

tor and denominator, leaving 

37] j 

J■ ■ . Jdpi . . . dq. 

(247) 

where the integrals as before are to be taken between e and 

e -f- de. Ai\f is therefore independent of being a function 

of the energy and the external coordinates. 
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Now we have identically 

Ai — Ax — (Ax — ^ilf) + (27|, — Ax), 

where A^ — AJf denotes the excess of the force (tending to 

increase a^) exerted by any system above the average of such 

forces for systems of the same energy. Accordingly, 

(Ax — Ax)^ — (Ax — Ax]f)^ A 2 (Ax — Ax\A(Ai ^ — Ax) + (Axi^ — Ax)‘. 

But the average value of (Aj — AjU) (A-iU — A^) for systems 
of the ensemble which have the same energy is zero, since for 

such systems the second factor is constant. Therefore the 

average for the whole ensemble is zero, and 

(Ax - Ax)‘^ = (Ax - aCA^ + (Ax ie - Axf. (2A8) 

In the same way it may be shown that 

(Ax — Ax) (e — e) = (AAl — Ai) (e — e). (249) 

It is evident that in ensembles in which the anomalies of 

energy e — e may' be regarded as insensible the same wdll be 

true of the quantities represented by A^'f — A^. 

The properties of quantities of the form A^le will be 

farther considered in Chapter X, which will be devoted to 

ensembles of constant energy. 

It may not be without interest to consider some general 

formulae relating to averages in a canonical ensemble, which 

embrace many of the results which have been given in this 

chapter. 

Let u be any function of the internal and external coordi¬ 

nates with the momenta and modulus. We have by definition 

all ^ tp—e 

u ~ j . . , I ue ^ djpi . . . (250) 

If we differentiate with respect to we have 

du 

d@ 
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du du w (i^ — e) u dip 

d'A di'J © cZ© 

Setting ti = 1 in this equation, we get 

dip p — t‘ 

c® "■ 0 ’ 

and substituting this value, we have 

du du u e ue 

<5© “ Sg (P” ~ 

(251) 

or 
„ du du — 

d@ d<d 
■ lie — (u — «) (e — e)- (252) 

If we differentiate equation (250) with respect to a (which 

may represent any of the external coordinates), and write A 

for the force — , we get 
dJx 

_ aU / 
du _ C d:u u dp u ^ 

J ’J \da ^ ® da ”^0 
pliaaes 

tf 

or 
du du 

da da 

u dp uA 

<d ~da^ 0 

Setting M = 1 in this equation, we get 

(253) 

dp __ 

Substituting this value, we have 

du du 

da da 

uA uA 
(254) 

or @2-® ()r “ ~ — (u — u) (A — A). (255) 

Repeated applications of the principles expressed by equa¬ 

tions (252) and (255) are perhaps best made in the particular 

cases. Yet we may write (252) in this form 
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(£ + IJ) (ll — u) = 0, 

where D represents the operator 0^ d;d&. 

Hence 

(e -f- I>/‘ (ll — u) = 0, (2571 

where h is any positive whole number. It will be observed, 

that since e is not function of 0, (e + Dy‘ may be expanded b}' 

the binomial theorem. Or, we may write 

(e + D) u =U + D) u, (258; 

whence (e + Jjy u — (e + TJ)’' u. 

But the operator (" + Dy, although in some respects more 

simple than the operator without the average sign on the e, 

cannot be expanded by the binomial theorem, since e i.s a 

function of 0 with the external coordinates. 

So from equation (254) we have 

whence 

whence 

d\ , 
[&+d^) = 

U + stJ (“-“) = o; 

fA^d\ (A d\. 

(A d y (A, dV 

The binomial theorem cannot be applied to these operators. 

Again, if we now distinguish, as usual, the several external 

coordinates by suffixes, we may apply successively to the 

expression u — u any or all of the operators 

e+&~, A.+&4-, A^ + ®~, etc. (264) 
d©’ ‘ doi da, ^ 
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as many times as we choose, and in any older, the average 

value of the result will be zero. Or, if we apply the same 

operators to u, and finally take the average value, it wall be the 

same as the value obtained by writing the sign of average 

separately as u, and on e, A^, A.^. etc., in all the operators. 

If u is independent of the momenta, formulae similar to 

the preceding, but having in place of e, may be derived 

from equation (179). 



CHAPTER VIII. 

ON CERTAIN IMPORTANT FUNCTIONS OF THE 

ENERGIES OF A SYSTEM. 

In order to consider more particularly the distribution of a 

canonical ensemble in energy, and for other purposes, it will 

be convenient to use the following definitions and notations. 

Let us denote by Vthe extension-in-phase below a certain 

limit of energy wliich we shall call e. That is, let 

T= . .dq,„ (265) 

the integration being extended (with constant values of the 

external coordinates) over all phases for which the energy is 

less than the limit e. We shall suppose that the value of this 

integral is not infinite, except for an infinite value of the lim¬ 

iting energy. This will not exclude any kind of system to 

which the canonical distribution is applicable. For if 

taken without limits has a finite value,* the less value repre¬ 

sented by 

taken below a hmiting value of e, and with the e before the 

integral sign representing that hmiting value, wfill also be 

finite. Therefore the value of V, which differs only by a 

constant factor, will also be finite, for finite e. It is a func¬ 

tion of € and the external coordinates, a continuous increasing 

* This is a necessary condition of the canonical distributioa See 

Chapter IV, p. 36. 
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funotion of e, which becomes infinite with e, and vanishes 

for the smallest possible value of e, or for e = — oo, if the 

energy may be diminished without limit. 

Let us also set 
dV 

4> = log de 
(26G) 

The extension in phase between any two limits of energy, e' 

and e", will be represented by the integral 

£ e^de. (267) 

And in general, we may substitute de for ... dq„ in a 

2M-fold integral, reducing it to a simple integral, whenever 

the hmits can be expressed by the energy alone, and the other 

factor under the integral sign is a function of the energy alone, 

or with quantities which are constant in the integration. 

In particular we observe that the probability that the energy 

of an unspecified system of a canonical ensemble lies between 

the limits e' and e" will be represented by the integral * 

••I- 

£ ■+0 
de, (268) 

and that the average value in the ensemble of any quantity 

which only varies with the energy is given by the equation -j- 

e • 

-I de, (269) 

F=:0 

where we may regard the constant as determined by the 

equation | 

-f ® de, (2T0) 

In regard to the lower limit in these integrals, it will be ob¬ 

served that F = 0 is equivalent to the condition that the 

value of e is the least possible. 

* Compare equation (93). t Compare equation {108). 

t Compare equation (92). 
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In like manner, let us denote by the extension-in-configu¬ 

ration below a certain limit of potential energy which we may 

call 65. That is, let 

F, dq^ . . . dq„, (271) 

the integration being extended (with constant values of tlie 

external coordinates) over all configurations for -wliich the 

potential energy is less than e^. will be a function of 

with the external coordinates, an increasing function of 

which does not become infinite (in such cases as we shall con¬ 

sider*) for any finite value of e,. It vanishes for the least 

possible value of or for = — 00 , if 6, can be diminished 

without limit. It is not always a continuous function of €,j. 

In fact, if there is a finite extension-iri-configiiration fjf con¬ 

stant potential energy, the corresponding value of F, will 

not include that extension-in-configuration, but if be in¬ 

creased infinitesimally, the corresponding value of Vg will be 

increased by that finite extension-in-configuration. 

Let US also set 

The extension-in-configuration between any two limits of 

potential energy e/ and may be represented by the integral 

J*'* (273) 

whenever there is no discontinuity in the value of Vg as 

function of e, between or at those limits, that is, when¬ 

ever there is no finite extension-in-configuration of constant 

potential energy between or at the limits. And in general, 

with the restriction mentioned, we maj' substitute de, for 

Aj dq^ . . . dq^ in an w-fold integral, reducing it to a shnple 

integral, when the limits are expressed b}'- the potential energy, 

and the other factor under the integral sign is a function of 

* If Vq were infinite for finite values of V would evidently be infinite 

for finite values of e. 
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the potential energy, either alone or with quantities which are 

constant in the integration. 

We may often avoid the inconvenience occasioned by for¬ 

mulae becoming illusory on account of discontinuities in the 

values of as function of by substituting for the given 
discontinuous function a continuous function which is practi¬ 

cally equivalent to the given function for the purposes of the 

evaluations desired. It only requires infiniteshnal changes of 

potential energy to destroy the finite extensions-in-configura- 

tion of constant potential energy which are the cause of the 

difficulty. 
In the case of an ensemble of systems canonically distributed 

in configuration, when F’j is, or may be regarded as, a continu¬ 

ous function of (within the limits considered), the prolm- 

bility that the potential energy of an unspecified system lies 

between the limits and e^' is given by the integral 

h' 

(2T4) 

where ifr may be determined by the condition that the value of 

the integral is unity, when the limits include aU possible 

values of In the same case, the average value in the en¬ 

semble of any function of the potential energy is given by the 

equation 

r 0 + 
u = l 2ie (275) 

V^ = 0 

When Fj is not a continuous function of e,, we may write fZI^ 

for in these formulae. 

In like manner also, for any given configuration, let us 

denote by Fp the extension-in-velocity below a certain limit of 

kinetic energy specified by e^. That is, let 

dp„, (276) 
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the integration being extendiid, with constant values of the 

coordinates, botli internal and external, over all values of the 

momenta for which the kinetic energy is less than the limit fj,. 

Vj, Mdll evidently be a continuous increasing function of 

which vanishes and becomes infinite with Let us set 

4>p • 
1 (27T) 

The extension-in-velocity between any two limits of kinetic 

energy and e/' may be represented by the integral 

/ (278) 

And in general, we may substitute c'fr de^ for Aj,l dp.^ . . . dp^ 

or Agt dq.^ . , . dq„ in an m-fold integral in which the coordi¬ 

nates are constant, reducing it to a simple integral, when the 

limits are expressed by the kinetic energy, and the other factor 

under the integral sign is a function of the kinetic energy, 

either alone or with quantities which are constant in the 

integration. 

Tt is easy to express and in terms of Since A^ is 

function of the coordinates alone, we have by definition 

r, = a/J*. ..Jdp,... dp^ (279) 

the limits of the integral being given by Cp. That is, if 

ep=:F{2H,-..p,), (280) 

the limits of the integral for gp — 1, are given by the equation 

F(p„ . .. p:) = 1, (281) 

and the limits of the integral for gp — a^, are given by the 

6Q UfttlOll- 
. .p,) (282) 

But since F represents a quadratic function, this equation 

may be written 

\ a a j , 
(283) 
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The value of Vp may also be put in the form 

Now we may determine Fj, for = 1 from (279) wliere the 

limits are expressed by (281), and Vp for from (284) 

taking the limits from (288). The two integrals thus deter¬ 

mined are evidently identical, and we have 

n 

i. e., Vp varies as We may^ therefore set 

(285) 

(286) 

where C is a constant, at least for fixed values of the internal 

coordinates. 
To determine this constant, let us consider the case of a 

canonical distribution, for which we have 

= 1, 

where e ® = (27r0) 

Substituting this value, and that of from (286), we get 

<yy ^ ” 
^(7^6 ®€j>^ dep = , 

^ . (2^)" 
'^“r(in + l) 

Having thus determined the value of the constant G, we may 
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substitute it in the general expressions (28G), and obtain the 

following values, which are perfectly general: 

71 

_ ('2Trfp)^ 

+ 1) 
(288) 

r(i») 
*(289) 

It will be observed that the values of Fj, and <j>p for any 

given Ep are independent of the configuration, and even of the 

nature of the system considered, except with respect to its 

number of degrees of freedom. 

Returning to the canonical ensemble, we may express the 

probability that the kinetic energy of a system of a given 

configuration, but otherwise unspecified, falls within given 

limits, by either member of the following equation 

/■ 
'Pi-- 

Since this value is independent of the coordinates it also 

represents the probability that the kinetic energy of an 

unspecified system of a canonical ensemble falls within the 
limits. The form of the last integral also shows that the prob¬ 

ability that the ratio of the kinetic energy to the modulus 

* Very similar Taiues for Vg, A, V, and may be found in the same 

way in the case discussed in the preceding foot-notes (see pages 64, 72, 77, and 

70), in which eg is a quadratic function of tlie g’s, and A,; independent of the q’s. 

In this case we hare 

UgJ r(in + i)^’ 

r(in) 

Va,^ r(>n-i) ’ 

-\Sg) r(n) 
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falls within given limits is independent also of the value of 

the modtdus, being detenniried entirely by the number of 

degrees of freedom of the system and the limiting values 

of the ratio. 

The average value of any function of the kinetic energy, 

either for the whole ensemble, or for any particular configura¬ 

tion, is given by 
fr 

- f“ue *(291) 
9 0 

® r(in) 
Thus: 

ej,” = ^Q”» if t(292) 

If n = 1, ~ 2 T and dtpjde = 0 for any value of €. If n = 2, the case is 

the same with respect to >pq. 

t This equation has already been proved for positive integral powers of 

the kinetic energy. See page 77. 
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“ [r(in)f 

n n 

(2-!rf(lF 
-1 

> if n > 1; 

d(Ip 1 

clsp 0 ’ 

if M > 2 ; 

(294) 

(296) 

(296) 

If jt = 2, e^” = 2 TT, and d^p'dep = 0, for any value of e^. 

The definitions of V, Fj, and Vj, give 

V^J JdVpdVj (297) 

where the integrations cover all phases for which the energy 

is less than the limit e, for which the value of V is sought. 

This gives 

V=jVpdVs, (298) 

Vq = 0 

and '5=' 
/=^=j (299) 

Vy — 0 

where Vp and are connected with by the equation 

ep + = constant €. (300) 

If «. > 2, vanishes at the upper limit, i. e., for Cp = 0, and 

we get by another differentiation 

p”) 
Vq-ZZd 

eg=e 

V=J Vpe^^de,, 
Vq-O 

(302) 

(303) 

We may also write 
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etc., when is a continuous function of commencing with 

the value I', = 0, or when we choose to attribute to a 

fictitious continuity commencing with the value zero, as de¬ 

scribed on page 90. 

If we substitute in these equations the values of and 

which we have found, we get 

r= 
(2 Ti-y 2 • 

r(in+T)j 
Vq = 0 

■eXdVn, (304) 

where e'^'‘ de^ may be substituted for dV^'m the cases above 

described. If, therefore, n is known, and Vg as function of 

e^, V and may be found by quadratures. 

It appears from these equations that V is always a continu¬ 

ous increasing function of e, commencing with the value V= 

0, even when this is not the case with respect to and e^. 

The same i.s true of e^, when 7i > 2, or when w = 2 if Fj in¬ 

creases continuously with from the value = 0. 

The last equation may be derived from the preceding by 

differentiation with respect to e. Successive differentiations 

give, if A < J w -f- 1, 

<l'‘V rd'^Vp 

dt’' J dep" 
Vq=0 

d K (?^r 
r(-|-n + 1 

eq-e 

5/<«- ■h). 

VqZZO 

eqf dVq. (306) 

dJ'Vjdd' is therefore positive if A < w + 1. It is an in¬ 

creasing function of e, if A < ^n. If e is not capable of 

being diminished without limit, cP'VId^ vanishes for the 

least possible value of €, if A < J-m. 

If n is even, 
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That is, V,j is the same function of t,, as —- --- of e. 

(2 7r)2 (it’3 

When n is large, approximate formulae will be more avail¬ 

able. It will be sufficient to indicate the method proposed, 

without precise discussion of the limits of its applicability or 

of the degree of its approximation. For the value of e'^ cor¬ 

responding to any given e, we have 

(308) 

wffiere the variables are connected by the equation (300). 

The maximum value of + <t>q is therefore characterized by 

the equation 

dfp de. (309) 

The values of ep and determined by this maximum we shall 

distinguish by accents, and mark the corresponding values of 

functions of and in the same way. Now we have by 

Taylor’s theorem 

= 4’v + 

— <Pq' + 

(310) 

(311) 

If the approximation is sufficient without going beyond the 

quadratic terms, since by (300) 

we may write 

(f> 

4-00 

p 1 g (312) 

where the limits have been made ± oc for analytical simplicity. 

This is allowable when the quantity in the square brackets 

has a very large negative value, since the part of the integral 
7 
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corresponding to other than very small values of — e,' may 

be regarded as a vanisbing quantity. 

This gives 

or 

<^ = <#'p'++ ilog(27r) —Jlog j^—J. (314) 

From this equation, with (289), (300) and (309), we may 

determine the value of (p corresponding to any given value of 

e, when is known as function of 

Any two systems may be regarded as together forming a 

third system. If we have V or <f> given as function of e for 

any two systems, we may express by quadratures V and <p for 

the sy.stem formed by combining the two. If we distinguish 

by the suffixes ( )i, ( )2> ( )i2 quantities relating to 
the three systems, we have easily from the definitions of these 

quantities 

= dV,d V, V^dV, =J V,e^'de„ (315) 

=J/‘dVi = J e*‘dV, =J (316) 

where the double integral is to be taken within the limits 

Vi = 0, = 0, and + €3 = €jj, 

and the variables in the single integrals are connected by the 

last of these equations, while the limits are given by the first 

two, w'hich characterize the least possible values of Cj and 

respectively. 
It wiU be observed that these equations are identical in 

form with those by which V and p are derived from or 

and Vq or pq, except that they do not admit in the general 

case those transformations which result from substituting for 

Vp or (pp the particular functions which these symbols always 

represent. 
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Similar funuulae may be used to deiive V,j or (fi^j for tbe 

compound system, when one of these quantities is known 

as function of the potential energy in each of the systems 

combined. 
The opeiution represented by such an equation as 

?’12 
e s 01 02 , 

e e asi 

is identical with one of the fundamental operations of the 

theory of errors, viz., that of finding the probability of an erroi’ 

from the probabilities of partial errors of which it is made up. 

It admits a simple geometrical illustration. 

We may take a horizontal line as an axis of abscissas, and lay 

off Si as air abscissa measured to the right of any origin, and 

erect as a corresponding ordinate, thus determining a certain 

curve. Again, taking a different origin, we may lay off ea as 

abscissas measured to the left, and deteirnine a second curve by 

erecting the ordinates e'^2. We may suppose the distance be¬ 

tween the origins to be second origin being to the right 

if ej2 i® positive. We may determine a tliird curve by erecting 

at every point in the line (between the least values of ei and eg) 

an ordinate which represents the product of the two ordinates 

belonging to the curves already described. The area between 

this third curve and the axis of abscissa.s will represent the value 
of To get the value of this quantity for varying values 

of ei2» nis-y suppose the first two curves to be rigidly con¬ 
structed, and to be capable of being moved independently. We 

may increase or diminish ej^ by moving one of these curves to 

the right or left. The third curve must be constructed anew 

for each different value of ej2. 
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THE FUXCTIOX (j> AND THE CANONICAL DISTRIBUTION. 

In this chapter we shall return to the consideration of the 

canonical distribution, in order to investigate those properties 

which are especially related to the function of the energy 

which we have denoted by (p. 

If we denote by JY, as usual, the total number of systems 

in the ensemble, 

JYe ® de 

will represent the number having energies between the limits 

e and e + de. The expression 

iz5 
Ne ® 

(317) 

represents what may be called the density-in-energy. This 

vanishes for e = oo, for otherwise the necessary equation 

e = GO ti>—C 

e ® * = 1 (318) 

F=0 

could not be fulfilled. P^or the same reason the density-in¬ 

energy will vanish for e = — oo, if that is a possible value of 

the energy. Generally, however, the least possible value of 

the energy will be a finite value, for which, if n > 2, e^ will 

vanish,* and therefore the density-in-energy. Now the density- 

in-energy is necessarily positive, and since it vanishes for 

extreme values of the energy if «. > 2, it must have a maxi¬ 

mum in such cases, in which the energy may be said to have 

* Sec page 9G. 
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its most common or most probable value, and which is 

determined by the equation 

d(l> _1 

de & 
(319) 

This value of d<f)/de is also, when w > 2, itiS average value 

in the ensemble. For we have identically, by integration by 

parts, 

J de 
F=0 

\L—€ —00 ti/- C=: CO 

V—0 r—0 

de* (320) 

If m > 2, the expression in the brackets, which multiplied by N 

would represent the density-in-cnergj^, vanishes at the limits, 

and we have by (269) and (318) 

d4> _1 
de &' 

(321) 

It appears, therefore, that for systems of more than two degrees 

of freedom, the average value of dfpjde in an ensemble canoni¬ 

cally distributed is identical with the value of the same differ¬ 

ential coefficient as calculated for the most common energy 

in the ensemble, both values being reciprocals of the modulus. 

Flitherto, in our consideration of the quantities V, Vp, (f>, 

tjjj, ipp, we have regarded the external coordinates as constant. 

It is evident, however, from their definitions that V and p are 

in general functions of the external coordinates and the energy 

(e), that Vg and pg are in general functions of the external 

coordinates and the potential energy (e,). Vp and pp we have 

found to be functions of the kinetic energy (e^) alone. In the 

equation 
J, e = t» f 

— T. — '+A 

e ® = / e ® de, (322) 

v'=o 

by which may be determined, @ and the external coordinates 

(contained implicitly in p} are constant in the integration. 

The equation shows that is a function of these con.stants. 
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If their values are varied, we shall have by differentiation, if 

n > 2, 

« ®(- ^ d&j =^2d®Jee de 

e—CO f e^co e 

+ da,J'^ + da,J^ + etc, (323) 

V—O v=o 

(Since e'*’ vanishes with V, when m > 2, there are no terms due 

to the variations of the limits.) Hence by (269) 

or, since 
^ + e 

= V> (325) 

dll/ = rid® — @ da, — ® ^ da, — etc. 
Ciit^ (LQ/^ 

Comparing this with (112), we get 

A, d<f} 

da, @ ’ da^ ® ’ 

The first of these equations might be written* 

(1£\ 
\da,)t,a \* y« \da,Ja,q 

but must not be confounded with the equation 

s^daijcfa \d€ Jd \da,/ ,p^a 

which is derived immediately from the identity 

/dill's, _ /d(l>\ f de\ 

Xdaije^a^ \de )a\da,),f,^a 

(326) 

(327) 

(328) 

(329) 

(330) 

* See equations (321) and (104). SufHxes are here added to the differential 

coefHcients, to make the meaning perfectiy distinct, although the same quan¬ 

tities may he written elsewhere without the suffixes, when it is believed that 

there is no danger of misapprehension. The suffixes indicate the quantities 

which are constant in the differentiation, the single letter a standing for all 

the letters oj, 02, etc., or all except the one which is explicitly varied. 
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Moreover, if we eliminate dijr from (32G) by the equation 

dij/= &dy + yd® + de, (331) 

obtained by differentiating (325), we get 

de = — ®dy — dai — © ™ da^ — etc., (332J 
CICIq 

or by (321), __ _ 

-dy = ^de + ^da, + ^ d(i2 + etc. (333) 
de dui da^ 

Except for the signs of average, the second member of this 

equation is the same as that of the identity 

d<f> zzz'^pde + ™ dai + “ da^ + etc. (334) 
w6 dO/-^ (Lct^ 

For the more precise comparison of these equations, we may 

suppose that the energy in the last equation is some definite 

and fairly representative energy in the ensemble. For this 

purpose we might choose the average energy. It will per¬ 

haps be more convenient to choose the most common energy, 

which we shall denote by e^. The same suffix will be applied 
to functions of the energy determined for this value. Our 

identity then becomes 

It has been shown that 

^ ( dd>\ _ 1 
de ~~ \de ~ ©’ 

(336) 

w'hen M > 2. Moreover, since the external coordinates have 

constant values throughout the ensemble, the values of 

d<plda^, dj>jda^, etc. vary in the ensemble only on account 

of the variations of the energy (e), which, as we have seen, 

may be regarded as sensibly constant throughout the en¬ 

semble, when n is very great. In this case, therefore, we may 

regard the average values 

d^ 
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as practically equivalent to the values relating to the most 

common energy 

In this case also de is practically equivalent to de^. We have 

therefore, for very large values of 71, 

— drj — clcfiQ (337) 

approximately. That is, except for an additive constant, — -7 

may be regarded as practically equivalent to (f}^, when the 

number of degrees of freedom of the system is very great. 

It is not meant by this that the variable part of 7; + is 

numerically of a lower order of magnitude than unity. For 

when n is very great, — y and are very great, and we can 

only conclude that the variable part of 7 + is insignifi¬ 

cant compared with the variable part of rj or of taken 

separately. 
Now we have already noticed a certain correspondence 

between the quantities © and 7; and those which in thermo¬ 

dynamics are called temperature and entropy. The property 

just demonstrated, with those expressed by equation (336), 

therefore suggests that the quantities <p and dejdip may also 

correspond to the thermodynamic notions of entropy and tem¬ 

perature. We leave the discussion of this point to a sub¬ 

sequent chapter, and only mention it here to justify the 

somewhat detailed investigation of the relations of these 

quantities. 
We may get a clearer view of the limiting form of the 

relations when the number of degrees of freedom is indefi¬ 

nitely increased, if we expand the function ^ in a series 

arranged according to ascending powers of e — eg. This ex¬ 

pansion may be written 

^-^0+ Oo 
/cP<l>\ (e — eo)° 

\deVo 1£_ 
+ etc. 

(338) 

Adding the identical equation 
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\p — e iji — eo e — Eo 

we get by (336) 

^-e 
+ 

. (e-Eo)" (e - e„)« 
4> = + '/'o + + etc. 

(339) 

Substituting this value in 

€"’ tj/ — e 

I’ 

r + 'fi 
de, 

which expresses the probabihty that the energy of an unspeci¬ 

fied system of the ensemble lies between the limits e' and e", 

we get 

,V*2yo 2 
etc. 

de> (340) 

When the number of degrees of freedom is very great, and 

e — Eo in consequence very small, we may neglect tlie higher 

powers and write* 

(e-eq: 

.*Vo 2 

12 
de. (341) 

This shows that for a very great number of degrees of 

freedom the probability of deviations of energy from the most 

probable value (e^) approaches the form expressed by the 

‘law of errors.’ With this approximate law, we get 

* If a higher degree of accuracy is desired than is afforded by this formula, 

it may be multiplied by the series obtained from 

(e—ej,)s 

'~T~ 
-f- etc. 

by the ordinary formula for the expansion in series of an exponential func¬ 

tion. There would he no especial analytical difficulty in taking account of 

a moderate number of terms of such a series, which would coinineiice 

, , (E-eo)® , (e - Enfi , 
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whence 

■A — gp 

@ 
+ <Ao — i log Jlog (27r(€ — e)% 

(342) 

(343) 

(344) 

Now it has been proved in Chapter VII that 

(e-e)^ 

We have therefore 

2^-2 
n dij, 

^ + 4>o = + <Ao = -^log(27r(e - Jiog 

046) 

approximately. The order of magnitude of rj — cp^ is there¬ 

fore that of log n. This magnitude is mainly constant. 

The order of magnitude of v + 4^0 ~ i ^ of unity. 
The order of magnitude of , and therefore of — is that 

of n.* 

Equation (338) gives for the first approximation 

= (348) 
Cl€p 

The members of the last equation have the order of magnitude 

of n. Equation (338) gives also for the first approximation 

di#> 
cle @ V*v< 

(e — ep), 

* Compare (289), (314). 
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whence 

(349) 

de @J \de^ Jo (e - 
(350) 

This is of the oi-der of magnitude of n.* 

It should be observed that the approximate distribution of 

the ensemble in energy according to the ‘ law' of errors ’ is 

not dependent on the particular form of the function of the 

energy which we have assumed for the index of probability 

(■7). In any case, we must have 

c = co 

F=0 

where e’>+4’ is necessarily positive. This requires that it 

shall vanish for e = co , and also for e = — co , if this is a possi¬ 

ble value. It has been shown in the last chapter that if e has 

a (finite) least possible value (w'hich is the usual case) and 

n > 2, e* will vanish for that least value of e. In general 

therefore + 4> tviU have a maximum, which determines the 
most probable value of the energy. If we denote this value 

by fo, and distinguish the corresponding values of the func¬ 

tions of the energy by the same suffix, we sliaU have 

(362) 

The probability that an unspecified system of the ensemble 

* We shall find hereafter that the equation 

is exact for any value of n greater than 2, and that the equation 

/ d<f> 1 

\c?e &) 
is exact for any value of n greater than 4. 
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falls within any given limits of energy (e' and e") is repre¬ 

sented by 

f6”+^*. 

If we expand t] and ^ in ascending powers of e — e^, without 

going beyond the squares, the probability that the energy falls 

within the given limits takes the form of the ‘ law of errors ’ — 

KSXdS).]^ 

This gives 

, + ». = ilog[=i(g)^-i(g)J. (354) 

»d (7=1? = [- ($.)_ - (g)J" (355) 

We shall have a close approximation in general when the 

quantities equated in (366) are very small, i. e., when 

\deyo \de^ Jo 

is very great. Now when n is very great, — is of the 

same order of magnitude, and the condition that (366) shall 

be very great does not restrict very much the nature of the 

function tj. 
We may obtain other properties pertaining to average values 

in a canonical ensemble by the method used for the average of 

d(plde. Let u be any function of the energy, either alone or 

with @ and the external coordinates. The average value of u 

in the ensemble is determined by the equation 

(367) 
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Now we have identically 

/( du 

de 

u d<h\ 
<p-e 

-+ 
® de: r 0 ue (358j 

Therefore, by the preceding equation 

du u d<f> _ 

de ® de 
0 

*(359) 

If we set M = 1, (a value which need not be excluded,) the 

second member of this equation vanishes, as shown on page 

101, if n > 2, and we get 

dtji 1 
(360) 

as before. It is evident from the same considerations that the 

second member of (359) will always vanish if w > 2, unless u 

becomes infinite at one of the limits, in which case a more care¬ 

ful examination of the value of the expression will be necessary. 

To facilitate the discussion of such cases, it will be convenient 

to introduce a certain limitation in regard to the nature of the 

system considered. We have necessarily supposed, in all our 

treatment of systems canonically distributed, that the system 

considered was such as to be capable of the canonical distri¬ 

bution with the given value of the modulus. We shall now 

suppose that the system is such as to be capable of a canonical 

distribution with any (finite) f modulus. Let us see what 

cases we exclude by this last limitation. 

♦ A more general equation, which is not limited to ensembles canonically 

distributed, is 

where rj denotes, as usual, the index of probability of phase. 

t The term Jinite applied to the modulus is intended to exclude the ralue 

zero as well as infinity. 
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The impossibility of a canonical distribution occurs when 

the equation 
^ € = CC f 

— “ /• -l-A 

e ® = / 6 ® * 

r=i} 

(361) 

fails to determine a finite value for Evidently the equation 

cannot make ip- an infinite positive quantity, the impossibility 

therefore occurs when the equation makes = — <» . Now 

we get easily from (191) 

@2 
d@. 

If the canonical distribution is possible for any values of 0, 

we can apply this equation so long as the canonical distribu¬ 

tion is possible. The equation shows that as 0 is increased 
(without becoming infinite) — cannot become infinite unless 

6 simultaneously becomes infinite, and that as 0 is decreased 

(without becoming zero) — tjr cannot become infinite unless 

simultaneously e becomes an infinite negative quantity. The 

corresponding cases in thermodynamics would be bodies which 

could absorb or give out an infinite amount of heat without 

passing certain limits of temperature, when no external work 

is done in the positive or negative sense. Such infinite values 

present no analytical difficulties, and do not contradict the 

general laws of mechanics or of thermodynamics, but they 

are quite foreign to our ordinary experience of nature. In 

excluding such cases (which are certainly not entirely devoid 

of interest) we do not exclude any which are analogous to 

any actual cases in thermodynamics. 

We assume then that for any finite value of 0 tlie second 

member of (361) has a finite value. 
When this condition is fulfilled, the second member of 

(359) will vanish for u — V. For, if we set 0' = 20, 

e 6 de < 6 

V-Q 

de < e »'e 
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where denotes the value of -yjr for the modulus 0'. Since 

the last member of this formula vanishes for e — co , the 

less value represented by the first member must also vanisli 

for the same value of e. Therefore the second member of 

(359), which differs only by a consuint factor, vanishes at 

the upper limit. The case of the lower limit remains to be 

considered. Now 

e 

e ( 

v=o 

The second member of this formula evidently vanishes for 

the value of e, wliich gives V ~ 0, whether this be finite or 

negative infinity. Therefore, the second member of (359) 

vanishes at the lower limit also, and we have 

de 

V . 

or e V = (362) 

This equation, which is subject to no restriction in regard to 

the value of n, suggests a connection or analogy between the 

function of the energy of a system which is represented by 

V and the notion of temperature in thermodynamics. We 

shall return to this subject in Chapter XIV. 

If «. >2, the second member of (859) may easily be shown 

to vanish for any of the follomng values of u viz.: e, 

e™, where m denotes any positive number. It will also 

vanish, when n > 4, for u — d<f)lde, and when m > 2A for 

M — dJ'Vjdd'. When the second member of (359) van¬ 

ishes, and M > 2, we may write 

(“ 
(l(^ 

\^de ® J de ® 

We thus obtain the following equations : 

If w > 2, 

du 

de' 

1 
©’ 

(363) 

\ 

77 ^ - rf, 
^‘^-^\d^-®)-’l>de-® 

(364) 
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or 

^dtf, e* _ 

^ de @ ^ de ’ 

de de 0 

(£“ 

d4> 

^de 

dij> 

de 
£! 
@ 

= — md"~ 

If M > 4, 

7^_ _ i _ _ 

(365) 

(366) 

*(367) 

(368) 

t(369) 

If n > 2h, 

-^d’'Vd4, 1 ~^d'‘Vd<j> d*n V 

(fe* de (fe* * de* de * de*+* 

or 
-0#Y£_1 -0d*F 

de* ^^ © * de* 
(370) 

whence 
-0d*+‘F_ 1 

« “ ©*■ 

Giving h the values 1, 2, 3, etc., we have 

dtf>_1 

de "” ©’ 
if w > 2, 

(371) 

^ /^Y - JL 
de“ ■*“ Vde J “ ©“ if re > 4, 

as already obtained. Also 

cP^ _ 1 

de* de* de ^ if re > 6. (372) 

* This equation may also he obtained from equations (262) and (321). 

Compare also equation (349) which was derived by an approximative method, 

t Compare equation (360), obtained by an approximative method. 
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If Vj is a continuous increasing function of commenciug 

with Ij = 0, the average value in a canonical ensemble of any 

function of e^, either alone or with the modulus and the exter¬ 

nal cooidiiiates, is given by equation (276), whicli is identical 
with (357) except that e, <f>, and have the suffix ( )^. 'J'lie 

equation may be transformed so as to give an equation iden¬ 

tical with (359) except for the suffixes. If we add the same 

suffixes to equation (361), the finite value of its members will 

determine the possibility of the canonical distribution. 

From these data, it is easy to derive equations similar to 

(360), (362)-(372), except that the conditions of their valid¬ 

ity must be differently stated. The equation 

requires only the condition already mentioned with respect to 

Vg. This equation corresponds to (362), wdiich is subject to 

no restriction with respect to the value of m. We may ob¬ 

serve, however, that V will always satisfy a condition similar 

to that mentioned with respect to Vg. 

If Vg satisfies the condition mentioned, and a similar 

condition, i. e., if is a continuous increasing function of eg, 

commencing with the value e"^” — 0, equations will hold sim¬ 

ilar to those given for the case when « > 2, viz., similar to 

(360), (S64)-(S68). Especially important is 

d<j^q 1 
dCg ”” ©‘ 

If Vg, e’l”‘ (or dVg/deg), cPVglde^ all satisfy similar conditions, 

we shall have an equation similar to (369), which was subject 

to the condition w > 4. And if &‘Vg\de^ also satisfie.s a 

similar condition, we shall have an equation similar to (872), 

for which the condition was w > 6. Finally, if Fg and It suc¬ 

cessive differential coefficients satisfy conditions of the kind 

mentioned, we shall have equations like (870) and (371) for 
which the condition was n > 21i. 

8 
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These conditions take the place of those given above relat¬ 

ing to n. In fact, we might give conditions relating to the 

differential coefficients of F, similar to those given relating to 

the differential coefficients of F^, instead of the conditions 

relating to n, for the validity of equations (360), (363)-(372). 

This would somewhat extend the application of the equations. 



CHAPTER X. 

ON A DISTRIBUTION IN RIIASE CALLED MICROCANONI- 

CAL IN WHICH ALL THE SYSTEMS HAVE 

THE SAME ENERGY. 

An important case of statistical equilibriiun is that in which 

all systems of the ensemble have the same energy. We may 

arrive at the notion of a distribution which will satisfy the 

necessary conditions by the following process. We may 

suppose that an ensemble is distributed with a uniform den- 

sity-iii-pbase between two limiting values of the energy, e' and 

e", and with density zero outside of those lunits. Such an 

ensemble is evidently in statistical equilibrium according to 

the criterion in Chapter IV, since the density-in-phase may be 

regarded as a function of the energy. By diminishing the 

difference of e' and e", we may diminish the differences of 

energy in the ensemble. The limit of this process gives us 

a permanent distribution in which the energy is constant. 

We should arrive at the same result, if we should make the 

density any function of the energy between the limits e' and 

e", and zero oiitside of those limits. Thus, the limiting distri¬ 

bution obtained from the part of a canonical ensemble 

between two limits of energy, when the difference of the 

limiting energies is indefinitely diminished, is independent of 

the modulus, being determined entirely by the energJ^ and 

is identical with the limiting distribution obtained from a 

uniform density between limits of energy approaching the 

same value. 
We shall call the limiting distribution at which we arrive 

by this process microcanonieal. 

We shall find however, in certain cases, that for certain 

values of the energy, viz., for those for which e'^ is infinite. 
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this process fails to define a limiting distribution in any such 

distinct sense as for other values of the energy. The difficulty 

is not in the process, but in the nature of the case, being 

entirely analogous to that which we meet when we try to find 

a canonical di.stribution in cases when becomes infinite. 

We have not regarded such cases a.s affording true examples 

of the canonical distribution, and we shall not regard the cases 

in which is infinite as affording true examples of the micro- 

canonical distribution. We shall in fact find as we go on that 

in such cases our most important formulae become illusory. 

The use of formulae relating to a canonical ensemble which 

contain e’^ de instead of dp^... dq„, as in the preceding chapters, 

amounts to the consideration of the ensemble as divided into 

an infinity of microcanonical elements. 

From a certain point of view, the microcanonical distribution 

may seem more simple than the canonical, and it has perhaps 

been more studied, and been regarded as more closely related 

to the fundamental notions of thermodynamics. To, this last 

point we shall return in a subsequent chapter. It is sufficient 

here to remark that analytically the canonical distribution is 

much more manageable than the microcanonical. 

We may sometimes avoid difficulties which the mierocanon- 

ical distribution presents by reganiing it as the result of the 

following process, which involves conceptions less simple but 

more amenable to analytical treatment. We may suppose an 

ensemble distributed with a density proportional to 

e , 
where o> and e' are constants, and then diminish indefinitely 

the value of the constant m. Here the demsity is nowhere 

zero until we come to the limit, but at the limit it is zero for 

all energies except e'. We thus avoid the analytical compli¬ 

cation of discontinuities in the value of the density, which 

require the use of integrals with inconvenient limits. 

In a microcanonical ensemble of systems the energy (e) is 

constant, but the kinetic energy (ej,) and the potential energy 
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(e,) vary in the different systems, subject of course to the con¬ 

dition 
Ep -f- = e = constant. (37.3) 

Our first inquiries will relate to the division of energy into 

these two parts, and to the average values of functions of 

and 
We shall use the notation«]« to denote an average value in 

a microcanonical ensemble of energy e. An average value 

in a canonical ensemble of modulus which has hitherto 

been denoted by u, we shall in this chapter denote by wjg, to 

distinguish more clearly the two kinds of averages. 

The extension-in-pliase within any limits wMch can be given 

in terms of and may be expressed in tlie notations of the 

preceding chapter by the double integral 

dVpdVg 

taken within those limits. If an ensemble of systems is dis¬ 

tributed within those limits with a uniform densify-in-phase, 

the average value in the ensemble of any function (u) of the 

kinetic and potential energies ■will be expressed by the quotient 

of integrals 

If It d T^(j 

If dVpdV„ 

Since dVp — de^, and de^ = de when is constant, the 

expression may be written 

uc^^dedVa 

dedV„ 

To get the average value of u in an ensemble distributed 

microoanonioally -with the energy e, we must make the in¬ 

tegrations cover the extension-in-phase between the energies 

6 and e + de. This gives 
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e, = e 

deju dF, 

- 
eq—B 

deJ 6*‘‘dVj 

Vq=() 

But by (299) the value of the integral in the denominator 

is e'^. We have therefore 

(374) 

r,i=zo 

where e'^p and are connected by equation (373), and u, if 

given as function of e^, or of and c,, becomes in virtue of 

the same equation a function of e, alone. 

We shall assume that has a finite value. If » > 1, it is 

evident from equation (305) that e'^ is an increasing function 

of e, and therefore cannot be infinite for one value of e without 

being infinite for all greater values of e, which would make 

— ifr infinite.* When w > 1, therefore, if we assume that e'^ 

is finite, we only exclude such cases as we found necessary 

to exclude in the study of the canonical distribution. But 

when w — 1, cases may occur in which the canonical distribu¬ 

tion is perfectly applicable, but in which the formulae for the 

microcanonical distribution become illusory, for particular val¬ 

ues of e, on account of the infinite value of e'^. Such failing 

cases of the microcanonical distribution for partioiblar values 

of the energy wiU not prevent us from regaiding the canon¬ 

ical ensemble as consisting of an infinity of microcanonical 

ensembles, t 

* See eq^uatiou (322). 

t An example of the failing case of the microcanonical distribution is 

afforded by a material point, under the influence of gravity, and constrained 

to remain in a vertical circle. The failing case occurs wlion the energy is 

just sufficient to carry the material point to the highest point of the circle. 

It will be observed that the difficulty is inherent in the nature of the case, 

and is quite independent of the mathematical formulae. The nature of the 

difficulty is at once apparent if we try to distribute a finite number of 
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From the last equation, with (298), we get 

Vpd V, = e~^ K 
F, = 0 

But by equations (288) and (289) 

_ 2 
^ rfi — €pt 

71 ^ 

Therefore 
-■t _2_, 

^ r — 6 rpe — — €p6* 
7t 

(375) 

(376) 

(377) 

Again, with the aid of equation (301), we get 

SI 
der 

A ^ — e (378) 

if ?i > 2. Therefore, by (289), 

dcf> dcj>p 
(379) 

These results are interesting on account of the relations of 

the functions e^7‘ y and ^ to the notion of temperature in 

thermodynamics, — a subject to which we shall return here¬ 
after. They are particular cases of a general relation easily 

deduced from equations (306), (374), (288) and (289). We 

have 

dJ'V 

de’‘ -I 
v„=o 

r/* V 
^dV,, if h <in + l. 
deJ 

The equation may be written 
€(j.= e 

—fp V -*0 
e -7-r* = e 

de^ 
v„=o 
7” 

-<Ppd’‘V,, <t'p 
e dFl. 

material points rrith this particular yalue of the energy as nearly as possible 

in statistical equilibrium, or if we ask: What is the probability that a point 

taken at random from an ensemble in statistical equilibrium with tiiis Talue 

of the energy will be found in any specified part of the circle ? 
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We have tlierefore 

-<P eP V -<Pt. dl V., 
e --T = e T rfc* de “ |E 

(380) 

if A < I« 4- 1. For example, when n is even, we may make 

h = ,|m, which gives, with (807), 

n 

iXi ») 
(381) 

Since any canonical ensemble of systems may be regarded 

as composed of microeanonical ensembles, if any quantities 

u and V have the same average values in every microeanonical 

ensemble, thej'" will have the same values in every canonical 

ensemble. To bring equation (380) formally under this rule, 

we may observe that the first member being a function of e is 

a constant value in a microeanonical ensemble, and therefore 

identical with its average value. We get thus the general 

equation 

WV 

de'‘ . de/ 
ran) 

if A < 1 7t + 1.* 

ran- 

The equations 

^ + 1) 

VJ '=pl0! 

(382) 

(383) 

1 _ ^ 
0 de I 

(384) 

may be regarded as particular cases of the general equation. 

The last equation is subject to the condition that n > 2. 

The last two equations give for a canonical ensemble, 

if M > 2, 

(385) 

The corresponding equations for a microeanonical 

give, if M > 2, 

dd> 

dlog V’ 

ensemble 

(386) 

* See equation (292). 
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which shows that dc^ d log V approaches the value unity 

when n is very great. 

If a system consists of two parts, having separate energies, 

we may obtain equations shnilar in form to the preceding, 

which relate to the system as thus divided.* We shall 

distinguish quantities relating to the parts by letters with 

suffixes, the same letters witlioiit suffixes relating to the 

whole system. The extension-in-phase of the whole system 

within any given limits of the energies may be represented by 

the double integral 

J J dVydV^ 
taken within those limits, as appears at once from the defini¬ 

tions of Chapter VIII. In an ensemble distributed with 

uniform density within those limits, and zero density outside, 

the average value of any function of and is given by the 

quotient 

// udV^dV., 

S.f dV,dV^ 
which may also be ■written f 

LL 
ff 

u de dV2 

e'dedV^ 

If we make the limits of integration e and e -f di, we get the 

* If this condition is rigorously fulfilled, the parts will have no influence 

on each other, and the ensemble formed by distributing the whole micro- 

canonically is too arbitrary a conception to have a real interest. The prin¬ 

cipal interest of the equations which we shall obtain will be in cases in 

which the condition is approximately fulfilled. But for the purposes nf a 

theoretical discussion, it is of course convenient to make such a ronditinn 

absolute. Compare Chapter IV, pp, 35 ff., where a similar condition is con¬ 

sidered in connection with canonical ensembles. 

t Where the analytical transformations are identical in form with those 

on the preceding pages, it does not appear necessary to give all the steps 

with the same detail. 
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average value of u in an ensemble in which the whole system 

is microcanonically distributed in phase, viz., 

'^e=e^^ J'ue'^'dF,, (387) 

r,'=o 

where <^j and are connected bj^ the equation 

ei + 63 = constant = e, (388) 

and M, if given as function of ei, or of e, and , becomes in 

virtue of the same equation a function of 62 alone.* 

Thus 
€2=€ 

6-^^rx\. = e~^j VxdVx, (389) 

F^O 

(390) 

Tills requires a similar relation for canonical averages 

0 = e-^rU = = e-^’vL. 
Again 

dex 

r ^ 
J dfx 

dcjxi <t>x 
e'dr„. 

But if > 2, vanishes for = 0,t and 

e2=f 

d 4 d U •fy, 
^ Ik 

F,=0 r,=o 

Hence, if n, > 2, and > 2, 

dtfi dcf>i drj>x\ 

de dex s 

(391) 

(392) 

(393) 

(394) 

* In the applications of the equation. (387), we cannot obtain all the results 

corresponfling to those which we have obtained from equation (374), because 

<pp is a known function of ep, while ipi must be treated as an arbitrary func¬ 

tion of or nearly so. 

t See Chapter VIII, equations (305) and (316). 
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and 
1 difi 

0 rfe a 
d<jj^ 

dco jfej 
(395) 

We have compared ceitairi functions of the energy of the 

whole system with average values of similar functions of 

the kinetic energy of the whole system, and with average 

values of similar functions of the whole energy of a part of 

the system. We may also compare the same functions with 

average values of the kinetic energy of a part of the system. 

We shall express the total, kinetic, and potential energies of 

the whole system by e, e,,, and e,, and the kinetic energies of the 

parts by and €2,,, These kinetic energies are necessarily sep¬ 

arate : we need not make any supposition concerning potential 

energies. The extension-in-phase within any limits which can 

be expressed in terms of e,, ejj,, e,^p may be represented in the 

notations of Chapter VIII by the triple integral 

Iff 
taken within those limits. And if an ensemble of systems is 

distributed with a uniform density within those lunits, the 

average value of any function of e^, e^^,, ^2^ will be expressed 

by the quotient 

J J' fudVipdVipdV, 

'dV,pdV^,dVn 

or 

IIP 
j*J" J'ue^^^'declV^pdVg 

’///•*" 

To get the average value of u for a microcanonical distribu¬ 

tion, we must make the limits e and e + de. The denominator 

in this case becomes de, and we have 

e^_6 *2/^—*“*'7 

V„=0 eoj,=0 

(396) 
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where and are connected by the equation 

Eip + iip + ^1 — constant = e. 

Accordingly 

fn—^ ^20—f ^7 

Fip't = r'* J J Kpd V,pdV, = e ^ V, (397) 
V,fM> €!,,/=0 

and we may write 

e V= (398) 

and 

„ ^ „! ~01P „ ~<^2P „ 2 —, 2 —, ^onn\ 
@z=e V 0 = 6 Fip0 — e K2p@ = — ejpje = — ej^i©. (^399) 

Again, if Wj > 2, 

d4>ip 

*ip 

fq-€ €2P-* 

/ 
K-=n .„_=n 

d<l>jp 

dsip 

<Plp 
e dV^^dV, 

—4> 
<q~< 

s dc„ dV, 

F„=0 

—de dtj) 
de' 

(400) 

Hence, if > 2, and > 2, 

d'^i 

de de^p e d€2p je 
- — 1) 6ip^* = (ini — 1) (401) 

1_ 
@ de 

_dfjiip _ d<}32p 

0 dcip 0 de^p 
= (i«i - 1)6I7^Q=(i?!2-l) (402) 

We cannot apply the methods employed in the preceding 

pages to the microcanonical averages of the (generalized) 

forces Aj, A^, etc., exerted by a system on external bodies, 

since these quantities are not functions of the energies, either 

kinetic or potential, of the whole or any part of the system. 

We may however use the method described on page 116. 
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Let us imagine an ensemble of systems distributed in phase 

according to the index of probabihty 

c _ ~ 

where e' is any constant which is a possible value of the 

energy, except only the least value which is consistent with 

the values of the external coordinates, and c and w are other 

constants. We liave therefore 

(403) 

(404) 

(405) 

(406) 

where A^\e denotes the average value of in those systems 

of the ensemble which have any same energy e. (This 

is the same thing as the average value of ri j in a microcanoni- 

cal ensemble of energy e.) The validity of the transformation 

Is evident, if we consider separately the part of each integral 

which lies between two infinitesimally differing limits of 

energy. Integrating by parts, we get 
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de~^ 

dai 
-[3;a. ^1 

J V-d 

(407) 

Differentiating (405), we get 

€~CO 

v=o 

+p 
de 

da t) (408) 

where denotes the least value of e consistent with the exter¬ 

nal coordinates. The last term in this equation represents the 

part of jda^ which is due to the variation of the lower 

limit of the integral. It is evident that the expression in the 

brackets will vanish at the upper limit. At the lower limit, 

at which ep = 0, and e, has the least value consistent with the 

external coordinates, the average sign on -dje is superfluous, 

as there is but one value of Aj which is represented by 

— de^/day Exceptions may indeed occur for particular values 

of the external coordinates, at which deafda^ receive a finite 

increment, and the formula becomes illusoiy. Such particular 

values we may for the moment leave out of account. The 
last term of (408) is therefore equal to the first term of the 

second member of (407). (We may observe that both vanish 

when w > 2 on account of the factor e^.) 

We have therefore from the.se equations 

,/(' 
dA^\, 

de 

dtfi 

' de 
de 

da^ 

+0 
de, 

or r/e de 0. (409) 
J \ de de da^J 

F=0 

That is: the average value in the ensemble of the quantity 

represented by the principal parenthesis is zero. This must 
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be true for any value of w. If wo diminisli w, the average 

value of the parenthesis at the limit when oi vanishes becomes 

identical with the value for e = e'. But this may bo any value 

of the energy, excejjt the least possible. We liave therefore 

unless it be for the least value of the energy consistent with 

the external coordinates, or for particular values of the ex¬ 

ternal cooitlLnates. But the value of any term of this equor 

tion as determined for particular values of the energy and 

of the external coordinates is not distinguishable from its 

value as determined for values of the energy and external 

coordinates indefinitely near those particular values. The 

equation therefore holds without limitation. Multiplying 

by e^, we get 

The integral of this equation is 

^^4- E 

where Fi is a function of the external coordinates. We have 

an equation of this form for each of the external coordinates. 

This gives, with (266), for the complete value of the differen¬ 

tial of V 

dV=:^e^diA- -f -f etc., (413) 

or 

dV=^ (de -f da^ -f da^ etc.) — da^ — F^ da.^ — etc. 
(414) 

To determine the values of the functions F^, etc., let 

us suppose etc. to vary arbitrarily, while e varies so 

as always to have the least value consistent tvith the values 

of the external coordinates. This wdll make V = 0, and 

dV= 0. If w < 2, we shall have also e'*’ = 0, which will 

give 
Fi = 0, J’a = 0, etc. (415) 
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The result is the same for any value of n. For in the varia¬ 

tions oousidered the kinetic energy will be constantly zero, 

and the potential energy will have the least value consistent 

with the external coordinates. The condition of the least 

po.ssible potential energy may Uinit the ensemble at each in¬ 

stant to a single configuration, or it may not do so ; but in any 

case the values of etc. will be the same at each instant 

for all the systems of the ensemble,* and the equation 

de + Aidai + A^da^ -f etc. = 0 

will hold for the variations considered. Hence the functions 

etc. vanish in any ease, and we have the equation 

F = 6^ * + e'*’ 37)6 dai + da^ -f etc., (416) 

or c? log F = 
de + ilTled®! -t- + etc. 

or again 

de = 6 ^ V d log V —~A^dai — — etc. 

(417) 

(418) 

It will be observed that the two last equations have the form 

of the fundamental differential equations of thermodynamics, 
e-A> F corresponding to temperature and log F to entropy. 

We have already observed properties of e~'^V suggestive of an 

analogy with temperature, f The significance of these facts 

will be cLi,scussed in another chapter. 

The two last equations might be written more simply 

de + 3,[g dci\ -j- A^le da^ -f- etc. 
C6 r T « 

(rA> 

de = e ^ d F — 3-11, da^ — 37]e da^ — etc., 

and still have the form analogous to the thermodynamic 

equations, but e~A’ has nothing like the analogies with tempera¬ 

ture which we have observed in er-* F. 

* This statement, as mentioned before, may have exceptions for particular 

values of the external coordinates. This will not invalidate the reasoning, 

which has to do with varying values of the external coordinates, 

t See Chapter IX, page 111; also this chapter, page 119. 



CHAPTER XI. 

MAXIMUM AND MINIMUM PROPERTIES OF VARIOUS DIS¬ 

TRIBUTIONS IN PHASE. 

In the foUowing theorems we suppose, as always, that the 

systems forming an ensemble are identical in nature and in 

the values of the external coordinates, which are here regarded 

as constants. 
Theorem 1. If an ensemble of systems is so distributed in 

phase that the index of probability is a function of the energy, 

the average value of the index is less than for any other distri¬ 

bution in which the distribution in energy is unaltered. 

Let us write ■>; for the index which is a function of the 

energy, and ij + Ai; for any other which gives the same dis¬ 

tribution in energy. It is to be proved that 

all all 

. .J (ri + At]) dpi.. . dq„ >J'...j‘rje’dpi...dq„, (419) 

phases phases 

where 77 is a function of the energy, and At/ a function of the 

phase, which are subject to the conditions that 

all all 

J. . .J dp^.. . dq^ — J. . .J e’’ dpi...dq„ = l, (420) 

phases phases 

and that for any value of the energy (e') 

6=:€''+rfc'' 

j". . .Jdpi . . . dq^ =J*. . .Je’dpi .. . dq^. (421) 

Equation (420) expresses the general relations -which r/ and 

97 -f At/ must satisfy in order to be indices of any distributions, 

and (421) expresses the condition that they give the same 

distribution in energy. 
9 
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Since 7) is a function of tlie energy, and may tiierefore be re¬ 

garded as a constant within tlie limits of integration of (421), 

we may multiply by rj under the integral sign in both mem¬ 
bers, which gives 

J■ ■ j . . . dq^ — J- ■ Jdp^ • • • dq^. 

6—e' ■ 

Since this is true within the Kmits indicated, and for every 

value of e', it wiU be true if the integrals are taken for all 

phases. We may therefore cancel the corresponding parts of 
(419), which gives 

aU 

^.. .J*dp^.. . c?2„ > 0. (422) 

phases 

But by (420) this is equivalent to 

aU 

f-f 4- 1 - s'dp, . . . dq„ > 0. (423) 

phases 

Now H- 1 — is a decreasing function of A-q for nega¬ 

tive values of At], and an increasing function of Ay for positive 

values of Ay. It vanishes for Ay = 0. The expression is 

therefore incapable of a negative value, and can have the value 

0 only for Ay — 0. The inequahty (423) mil hold therefore 

unless Ay — 0 for all phases. The theorem is therefore 
proved. 

Theorem II. If an ensemble of systems is canonically dis¬ 

tributed in phase, the average index of probability is less than 

in any other distribution of the ensemble having the same 
average energy. 

For the canonical distribution let the index be — e)/©, 

and for another having the same average energy let the index 

be — e) /© + At;, where Ay is an arbitrary function of the 

phase subject only to the limitation involved in the notion of 
the index, that 
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all ^f all f 

I" 'I" #1 • • • 'i'In -f • • ® #1 • • • - 1, 

phases phases 

(424j 

and to that relating to the constant average energy, that 

phases phases 

It is to be proved that 

/• • •/(! -1 + ® > 
phases 

Now in virtue of the first condition (424) we may cancel the 

constant term -\|r / @ in the parentheses in (426), and in virtue 

of the second condition (425) we may cancel the term e / (a>. 

The proposition to be proved is thus reduced to 

all ij/—f 

phases 

whieli may be written, in virtue of tbe condition (424), 

aU 

f...f (Ay 
phases 

+ 1 — e'^^) e ® dpi . . . > 0. (427) 

In this form its truth is evident for the same reasons which 

applied to (423). 
Theorem III. If @ is any positive constant, the average 

value in an ensemble of the expression y e j ® (y denoting 

as usual the index of probability and e the energy) is less when 

the ensemble is distributed canonically with modulus 0, than 

for any other distribution whatever. 

In accordance with our usual notation let us write 

(pfr — e)I® for the index of the canonical distribution. In any 

other distribution let the index be (i^ — e)/© + Ay. 
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In the canonical ensemble ■?? + e / @ has the constant value 

/ 0; in the other ensemble it has the value / 0 -j- Ai;. 

The proposition to be proved may tlierefore be written 

aU 

V • • • dq„, (428) 
phases 

where 

all At; 

y.. .J'e ® dpT,...dq„=J...J e ^ dpy,...dq„=l. 

phases phases 

(429) 

In virtue of this condition, since ijr / ® is constant, the propo¬ 

sition to be proved reduces to 

where the demonstration may be concluded as in the last 

theorem. 

If we should substitute for the energy in the preceding 

theorems any other function of the phase, the theorems, mu- 

tatis mutandis, would still hold. On account of the unique 

importance of the energy as a function of the phase, the theo¬ 

rems as given are especially worthy of notice. When the case 

is such that other functions of the phase have important 

properties relating to statistical equilibrium, as described 

in Cliapter IV,* the three following theorems, which are 

generalizations of the preceding, may be useful. It will be 

sufficient to give them without demonstration, as the principles 

involved are in no respect different. 

Theorem IV. If an ensemble of systems is so distributed in 

phase that the index of probability is any function of jf,, F.^, 

etc., (these letters denoting functions of the phase,) the average 

value of the index is less than for any other distribution in 

phase in which the distribution with respect to the functions 

etc. is unchanged. 

* See pages 37-41. 
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Theorem V. If an ensemble of systems is so distributed 

in phase that the index of probability is a linear function of 

etc., (these letters denoting functions of the phase,) the 

average value of the index is less than for any other distribu¬ 

tion in which the functions F^, etc. have the same average 

values. 

Theorem VI The average value in an ensemble of systems 

oit)-}- F (where t) denotes as usual the index of probability and 

jPany function of the phase) is less w'hen the ensemble is so 

distributed that -b .F is constant than for any other distribu¬ 

tion whatever. 

Theorem VII. If a system w^hich in its different phases 

constitutes an ensemble consi.sts of trvo parts, and we consider 

the average index of probabihty for the whole system, and 

also the average indices for each of the parts taken separately, 

the sum of the average indices for the parts will be either less 

than the average index for the whole system, or equal to it, 

but cannot be greater. The limiting case of ecj^uality occurs 

when the distribution in phase of each part is independent of 
that of the other, and only in this case. 

Let the coordinates and momenta of the w’holc system be 
!?1 I’l ■ Pni of which q.^^. . relate to one 
part of the system, and q^.^, . . .q„, to the other. 

If the index of probability for the whole system is denoted by 

57, the probabihty that the phase of an unspecified system lies 

within any given limits is expressed by the integral 

J. . . j'e^'dpi . . .dq, (431) 

taken for those limits. If we set 

J'- ■ •J'■ • ■ dp„dq^i . . . dq„ = c”, (432) 

where the integrations cover all phases of the second system, 

and 

e’ dpj.. . dp^ dqj,. . .dq^- e”, (433) 
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where the integrations cover all phases of the first system, 

the integral (431) will reduce to the form 

f P dpi d'D, (434) 

when the limits can be expressed in terms of the coordinates 

and momenta of tire first part of the system. The same integral 

will reduce to 

dpm+i dp, . . . dq„, (436) 

when the limits can be expressed in terms of the coordinates 

and momenta of the second part of the system. It is evident 

that 7;j and are the indices of probability for the two parts 

of the system taken separately. 

The main proposition to be proved may be written 

J. . .J'ni 6"- dp^. . . dq,, '^J'- • • ■ ■ - dq,^ 

dpt... dq„, (436) 

where the first integral is to be taken overall phases of the first 

part of the system, the second integral over all phases of the 

second part of the system, and the last integral over all phases 

of the whole system. Now we have 

J.. .J'e’ dpi . . . dq, — 1, (437) 

J- ■ •j’ e''dpi . . .dq„ = l, (438) 

and j'- - - J. . .dq, = l, (439) 

where the limits cover in each ease all the phases to which the 

variables relate. The two last equations, which are in them¬ 

selves evident, may be derived by partial integration from the 

first. 
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It appears from tlie defiiiitioiis of rj^ and that (486) may 

also be written 

J. . .J r/i e'djJi . . . dq^+J. . .Jrii e^dpi . . . dq„< 

If r/e’^ dpi.. .dq„, (440) 

or J'. . •J'iv — Vi — Vi) dpi . . . dq„ > 0, 

where the integrations cover all phases. Adding the equation 

= (441) 

which we get by multiplying (438) and (439), and subtract¬ 

ing (437), we have for the proposition to be proved 
all 

J. . . J‘[(, -r,,- r,,) e” -f 6”'+’= - e”] dpi. .. dq„ > 0. (442) 

phases 

Let 
U — rj—rii — rji. 

The main proposition to be proved may be written 

all 

J. . .J(ue'‘ -f 1 - e'‘)e'''+’“dpi ...dq„>0. 

phases 

(443) 

(444) 

This is evidently true since the quantity in the parenthesis is 

incapable of a negative value.* Moreover the sign = can 

hold only when the quantity in the parenthesis vanishes for 

aU phases, i. e., when u = 0 for all phases. This makes 

V — Vi + Vi for all phases, which is the analytical condition 

which expresses that the distributions in phase of the two 

parts of the system are independent. 

Theorem VIII If two or more en.semble8 of sy.stems which 

are identical in nature, but may be distributed differently in 

phase, are united to form a single ensemble, so that the prob- 

abihty-coeificient of the resulting ensemble is a linear function 

* See Theorem I, where this is prored of a similar expression. 
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of the probability-coefficients of the original ensembles, the 

average index of probability of the resulting ensemble cannot 

be greater than the same linear function of the average indices 

of the original ensembles. It can be equal to it only when 

the original ensembles are similarly distributed in phase. 

Let Pi, P2, etc. be the probabihty-coefficients of the original 

ensembles, and P that of the ensemble formed by combining 

them; and let , N,^, etc. be the numbers of systems in the 

original ensembles. It is evident that we shall have 

P — c^Pi + C2P2 + etc. = 2(ciPi), (445) 

where 

The main proposition to be proved is that 

^ all all 

J ■ ■ -/p log P dp^ ... < S p./- • • Jp, log Pi dp,... 
phases L phases —i 

(447) 
all 

or (fliPi log Pi) — P log P] dp,. . . dfi„ > 0. (448) 

phases 

If we set 

Q, - P, log Pi — Pi log P — Pi -f P 

Q, will be positive, except when it vanishes for P, — P. To 

prove this, we may regard P, and P as any positive quantities. 
Then 

\dP,^), P,- 

Since Q, and dQJdP, vanish for P, — P, and the second 

differential coefficient is always positive, Q, must be positive 

except when P, — P. Therefore, if Qr,, etc. have similar 
definitions. 

2 (Cl §,) >0. (449) 
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But since 2 (ci Pi) = P 

and 2 Cl = 1, 

2 (ci Qi) - 2 (Cl Pi log Pi) - P log P. (450) 

This proves (448), and shows that the sign = will hold only 

when 
Pi = P, P2 = P, etc. 

for all phases, i. e., only when the distribution in phase of the 

original ensembles are all identical. 
Theorem IX. A uniform distribution of a given number of 

systems within given Kmits of phase gives a less average index 

of probability of phase than any other distribution. 

Let 7/ be the constant index of the uniform distribution, and 

7} + index of some other distribution. Since the num¬ 

ber of systems within the given limits is the same in the two 

distributions we have 

J'. . dpi ... dq„ =J'. • ■j'e^ #1 ■ • • (451) 

where the integrations, like those which foUow, are to be 

taken within the given limits. The proposition to be proved 

may be written 

J.. .j'(ri + Xr{)e'+‘^'^dpt...dq,i> J. . .Jti e"'dpi-.. dq^, (452) 

or, since tj is constant, 

/ ■/<’ + I^rj) e^’’ dpi.. . dq^ >_/*••• J'’! dpi. . . dqn. (453) 

In (451) also we may cancel the constant factor e', and multiply 

by the constant factor (■?? + 1). This gives 

y. . .J'(r; + 1) e^’’ dpi. . . dq„ {rj + 1) dpi . . . dq„. 

The subtraction of this equation will not alter the inequality 

to be proved, which may therefore be written 

J'.. .J (Aj; — 1) dpi. . . dq„ >J'-- J— 
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or J'' j ~ + ^)^Pi - ■ ■ > O' (454) 

Since the parenthesis in this expression represents a positive 

value, except when it vanishes for Ai; = 0, the integral wUl 

be positive unless Ai/ vanishes everywhere within the limits, 

which would make the difference of the two distributions 

vanish. The theorem is therefore proved. 



CHAPTER XII. 

OX THE MOTION OF SYSTEMS AND ENSEMBLES OF SYS¬ 

TEMS THROUGH LONG PERIODS OF TIME. 

An important question which suggests itself in regard to any 

case of dynamical motion is whether the system considered 

wiU return in the course of time to its initial phase, or, if it 

will not return exactly to that phase, whether it will do so to 

any required degree of approximation in the course of a suffi¬ 

ciently long time. To be able to give even a partial answer 

to sueh questions, we must know something in regard to the 

dynamical nature of the system. In the foUowing theorem, 

the only assumption in this respect is such as we have found 

necessary for the existence of the canonical distribution. 

If we imagine an ensemble of identical systems to be 

distributed with a uniform density throughout any finite 

extension-in-phase, the number of the systems which leave 

the extension-in-phase and will not return to it in the course 

of time is less than any assignable fraction of the whole 

number; provided, that the total extension-in-phase for the 

systems considered between two hmiting values of the energy 

is finite, these limiting values being less and greater respec¬ 

tively than any of the energies of the first-mentioned exten¬ 

sion-in-phase. 

To prove this, we observe that at the moment which we 

call initial the systems occupy the given extension-in-phase. 

It is evident that some systems must leave the extension 

immediately, unless all remain in it forever. Those sy.stems 

which leave the extension at the first instant, we shall call 

the front of the ensemble. It will be convenient to speak of 

this front as generating the extension-in-phase through which it 

passes in the course of time, as in geometry a surface is said to 
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gerienite the volume through which it passes. In equal times 

the front generates equal extensions in phase. This is an 

iinmerliate consequence of the principle of conservation oj 

extension-in^phase, unless indeed vve prefer to consider it as 

a slight varialion in the expression of that principle. For in 

two equal short intervals of time let the extensions generated 

be A and B. (We make tlie intervals short simply to avoid 

the complications in the enunciation or interpretation of the 

principle which would ari.se when the same extension-in-phase 

Ls generated more than once in the interval considered.) Now 

if we imagine that at a given instant systems are distributed 

throughout tire extension A, it is evident that the same 

systems will after a certain time occupy the extension B, 

which is therefore equal to A in virtue of the principle citecL 

The front of the ensemble, therefore, goes on generating 

equal extensions in equal times. But these extensions are 

included in a finite extension, viz., that bounded by certain 

limiting values of the energy. Sooner or later, therefore, 

the front must generate phases which it has before generated. 

Such second generation of the same phases must commence 

with the initial phases. Therefore a portion at least of the 

front must return to the original extension-in-phase. The 

same is of course true of the portion of the ensemble which 

follows that portion of the front through the some phases at 

a later time. 

It remains to consider how large the portion of the ensemble 

is, which will return to the original extension-in-phase. There 

can be no poi-tion of the given extension-in-phase, the systems 

of which leave the extension and do not return. For we can 

prove for any portion of the extension as for the whole, that 

at least a portion of the systems leaving it will return. 

We may divide the given extension-in-phase into parts as 

follows. There may be parts such that the sy.stems within 

them will never pass out of them. These parts may indeed 

constitute the whole of the given extension. But if the given 

extension is very small, these parts will in general be non¬ 

existent. There may be parts such that systems within them 



TllKOUGH LONG PERIODS OF TIME. 141 

■will all pass out of tiie given extension and all return r\'itliin 

it. The whole of the given exten.sion-in-phasc is made up of 

jrarts of these two kinds. I’liis does not exclude the )jos.si- 

bihty of pliases on the boundaries of such jjarts, such timt 

systems starting with those phases would leave tlie extension 

and never return. But in the sujjposed distribution of an 

ensemble of systems with a uniform density-in-jdiase, such 

systems would not constitute any assignable fraction of the 

whole number. 

These distinetioiis may be illustrated by a very simple 

example. If we consider the motion of a rigid body of 

which one point is fixed, and which is subject to no forces, 

we find three eases. (1) The motion is periodic. (2) The 

system will never return to its original phase, but w'ill return 

infinitely near to it. (3) The system will never return cither 

exactly or approximately to its original phase. But if we 

consider any extension-in-phase, however small, a system 

leaving that extension will return to it except in the case 

called by Poinsot ‘ singular,’ viz., when the motion is a 

rotation about an axis lying in one of two planes having 

a fixed position relative to the rigid body. But all such 

phases do not constitute any true extension-in-phase in the 
sense in which we have defined and used the term.* 

In the same way it may be proved that the systems in a 

canonical ensemble which at a given instant are contained 

■within any finite extension-in-phase will in general return to 

* An ensemble ot systems distributed in phase is a less simple and ele¬ 

mentary conception than a single system. But by the coiisideralion of 

suitable ensembles instead of single systems, we may get rid of the inoon- 

venience of having to consider exceptions formed bj' particular eases of the 

integral equations of motion, these eases simply disappe.aring when the 

ensemble is substituted for the single system as a subject of study. This 

is especially true when the ensemble is distributed, as in the ease called 

canonical, throughout an extension-in-pliase. In a less degree it is true ot 

the microeanonical ensemble, which does not occupy any extension-in-phase, 

(in the sense in which have used the term,) although it is eonvenient to 

regard it as a limiting ease with respect to enaenihlea whieli do, as we thus 

gain for the subject some part of the analytical simplicitj^ which belongs to 

the theory of ensembles which occupy true extensions-in-phase. 
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that pxtension-in-phase, if they leave it, the exceptions, i. e., 

th(! number which pass out of the extension-in-phase and do 

not return to it, being less than any assignable fraction of the 

whole number. In other words, the probability that a system 

taken at random from the part of a canonical ensemble which 

is contained within any given extension-in-phaso, will pass out 

of that extension and not return to it, is zero. 

A similar theorem may be enunciated with respect to a 

microcanonical ensemble. Let us consider the fractional part 

of sueh an ensemble which lies within any given limits of 

phase. This fraction we shall denote by F. It is evidently 

constant in time since the ensemble is in statistical equi¬ 

librium. The systems within the limits will not in general 

remain the same, but some will pass out in each unit of time 

while an equal number come in. Some may pass out never 

to return within the limits. But the number which in any 

time however long pass out of the limits never to return will 

not bear any finite ratio to the number within the limits at 

a given instant. For, if it were otherwise, let f denote the 

fraction representing such ratio for the time T, Then, in 

the time T, the number which pass out never to return will 

bear the ratio fF to the whole number in the ensemble, and 

in a time exceeding TK^fF) the number which pass out of 

the limits never to return would exceed the total number 

of systems in the ensemble. The proposition is therefore 
proved. 

This proof will apply to the eases before considered, and 

may be regarded as more simple than that which was given. 

It may also be applied to any true case of statistical equilib¬ 

rium. By a true case of statistical equilibrium is meant such 

as may be described by giving the general value of the prob¬ 

ability that an unspecified system of the ensemble is con¬ 
tained within any given limits of phase.* 

* An ensemble in which the systems are material points constrained to 

move in vertical circles, with just enough energy to carry them to the 

highest points, cannot afford a true example of statistical equilibrium. For 

any other value of the energy than the critical value mentioned, we might 
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Let us next consider wliether an ensemble of isolated 

systems has any tendency in the course of time toward a 

state of statistical equilibrium. 

There are certain functions of phase wliich are comstant in 

time. The distribution of the ensemble with respect to the 

values of these functions is necessarily invariable, that is, 

the number of systems within any limits which can be 

specified in terms of these functions cannot vary in the course 

of time. The distribution in phase which without violating 

this condition gives the least value of the average index of 

probabihty of phase (i?) is unique, and is that in which the 

in various ways describe an ensemble in statistical equilibrium, while the 

same language applied to the critical value of the energy would fail to do 

so. Thus, if we should say that the ensemble is so distributed that the 

probability that a system is in any given part of the circle is proportioned 

to tlie time which a single system spends in that part, motion in either direc¬ 

tion being equally probable, we should perfectly define a distribution in sta¬ 

tistical equilibrium for any value of the energy except the critical value 

mentioned above, but for this value of the energy all the probabilities in 

question would vanish unless the highest point is included in the part of the 

circle considered, in which case the probability is unity, or forms one of its 

limits, in which case the probability is indeterminate. Compare the foot-note 

on page 118. 

A still more simple example is afforded by the uniform motion of a 

material point in a straight line. Here the impossibility of statistical equi¬ 

librium is not limited to any particular energy, and the canonical distribu¬ 

tion as well as the microcan onical is impossible. 

Tliese examples are mentioned here in order to show the necessity of 

caution in the application of the above principle, with respect to the question 

whether we have to do with a true case of statistical equilibrium. 

Another point in respect to which caution must be exercised is that the 

part of an ensemble of which the theorem of the return of systems is asserted 

should be entirely defined by limits within which it is contained, and not by 

any such condition as that a certain function of phase shall have a given 

value. This is necessary in order that the part of the ensemble which is 

considered should be any assignable fraction of the whole- Thus, if we have 

a canonical ensemble consisting of material points in vertical circles, the 

theorem of the return of systems may be applied to a part of the ensemble 

defined as contained in a given part of the circle. But it may not be applied 

in all cases to a part of the ensemble defined as contained in a given part 

of the circle and having a given energy. It would, in fact, express the exact 

opposite of the truth when the given energy is the critical value mentioned 
above. 
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index of probability (j)) is a function of the functions men- 

ti(jned.* It is therefore a permanent distribution,! and the 

only peraiarient distribution consistent with the invariability 

of the distribution with respect to the functions of phase 

which are constant in time. 
It would .seem, therefore, that we might find a sort of meas¬ 

ure of the deviation of an ensemble from statistical equilibrium 

in the excess of the average index above the minimum which is 

consistent with the condition of the invariability of the distri¬ 

bution with respect to the constant functions of phase. But 

we have seen that the index of probability is constant in time 

for each system of the ensemble. The average index is there¬ 

fore constant, and we find by this method no approach toward 

statistical equilibrium in the course of time. 

Yet we must here exercise great caution. One function 

may approach "mdefinitely near to another function, while 

some quantity determined by the first does not approach the 

corresponding quantity determined by the second. A line 

joining two points may approach indefinitely near to the 

straight line joining them, while its length remains constant. 

We may find a closer analogy with the case under considera¬ 

tion in the effect of stirring an incompres.sible liquid.! In 

space of 2 TO dimensions the case might be made analyti¬ 

cally identical with that of an ensemble of systems of to 

degrees of freedom, but the analogy is perfect in ordinary 

space. Let us suppose the liquid to contain a certain amount 

of coloring matter which does not affect its hydrodynamic 

properties. Now the state in which the density of the coloring 

matter is uniform, i. e., the stab, of perfect mixture, which is 

a sort of state of equilibrium in this respect that the distribu¬ 

tion of the coloring matter in space is not affected by the 

internal motions of the liquid, is characterized by a minimum 

* See Chapter XI, Theorem IV. 

t See Chapter IV, sub init. 

I By liquid is here meant the continuous body of theoretical hydrody¬ 

namics, and not anything of the molecular structure and molecular motions 

of real liquids. 
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value of the average square of tlie dejisity of the coioi'iiig 

matter. Let us suppose, however, that Uie uol(;riug iuatier is 

distributed with a variable deii-sity. If we give the liquid any 

motion whatever, subject only to the hydiudynamie law of 

incompressibility, — it may te a steady flux, or it may vary 
with the time,—the density of the coloring matter at any 

same point of the liquid will be unchanged, and the average 

square of this density will therefore be unchanged. Yet no 

fact is more familiar to us than that stirring tends to bring a 

liquid to a state of uniform mixture, or uniform densities of 

its components, which is characterized by minimum values 

of the average squares of these densities. It is quite true that 

in the physical experiment the result is hastened by the 

process of diffusion, but the result is evidently not dependent 

on that process. 

The contradiction is to be traced to the notion of the density 

of the coloring matter, and the process by which this quantity 

is evaluated. This quantity is the limiting ratio of the 

quantity of the coloring matter in an clement of space to the 

volume of that element. Now if we should take for our ele¬ 

ments of volume, after any amount of stirring, the spaces 

occupied by the same portions of the liquid which originally 

occupied any given system of elements of volume, the densi¬ 

ties of the coloring matter, thus estimated, would be identical 

with the original densities as determined by the given system 

of elements of volume. Moreover, if at the end of any finite 

amount of stirring we should take our elements of volume in 

any ordinary form but sufficiently small, the average square 

of the density of the coloring matter, as determined by such 

element of volume, would approximate to any required degree 

to its value before the stimug. But if we take any element 

of space of fixed position and dimensions, we may conllnue 

the stirring so long that the densities of the colored liquid 

estimated for these fixed elements will approach a uniform 

limit, viz., that of perfect mixture. 

The case is evidently one of those in which the limit of a 

limit has different values, accoi-ding to the order in whiclr we 
10 
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apply the processes of taking a limit. If treating the elements 

of volume as con.slant, we continue tlie stirring indethiitely, 

we get a miiform density, a result not affected by making the 

elements as small as we choose; but if treating the amount of 

stirring as finite, we diminish indefinitely the elements of 

volume, we get exactly the same distribution in density as 

liefore the stiiTing, a result which is not affected by con¬ 

tinuing the stirring as long as we choose. The question is 

largely one of language and definition. One may perhaps be 

allowed to say that a finite amount of stirring will not affect 

the mean square of the density of the coloring matter, but an 

infinite amount of stirring may be regarded as producing a 

condition in which the mean square of the density has its 

minimum value, and the density is uniform. We may cer¬ 

tainly say that a sensibly uniform density of the colored com¬ 

ponent may be produced by Stirling. Whether the time 

requii-ed for this result would be long or short depends upon 

the nature of the motion given to the liquid, and the fineness 

of our method of evaluating the density. 

All this may appear more distinctly if we consider a special 

case of liquid motion. Let us imagine a cylindrical mass of 

liquid of which one sector of 90° is bkck and the rest white. 

Let it have a motion of rotation about the axis of the cylinder 

in which the angular velocity is a function of the distance 

from the axis. In the course of time the black and the white 

parts would become drawn out into thin ribbons, which would 

be wound spirally about the axis. The thickness of these rib¬ 

bons would diminish without limit, and the liquid would there¬ 

fore tend toward a state of perfect mixture of the black and 

white portions. That is, in any given element of space, the 

proportion of the black and white would approach 1: 3 as a limit. 

Yet after any finite time, the total volume would be divided 

into two parts, one of which would consist of the white liquid 

exclusively, and the other of the black exclusively. If the 

coloring matter, instead of being distributed initially with a 

uniform density throughout a section of the cylinder, were 

distributed with a density represented by any arbitrary func- 
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tion of the cylindrical coordinates r, B and z, the effect of the 

same motion continued indefinitely would be an approach to 

a condition in which the density is a function of r and z alone. 

In this limiting condition, the average sfpiarc of the density 

would be less than in the original condition, when the density 

was supposed to vary with 6, although after any finite time 

the average square of the density would be the same as at 

first. 

If we limit our attention to the motion in a single plane 

perpendicular to the axis of the cylinder, we have something 

which is almost identical with a diagrammatic representation 

of the changes in distribution in phase of an ensemble of 

systems of one degree of freedom, in which the motion is 

periodic, the period varying with the energy, as in the case of 

a pendulum swinging in a eireular arc. If the coordinates 

and momenta of the systems are represented by rectangu¬ 

lar coordinates in the diagram, the points in the diagram 

representing the changing phases of moving systems, will 

move about the origin in closed curves of constant energy. 

The motion will be such that areas bounded by points repre¬ 

senting moving systems will be preserved. The only differ¬ 

ence between the motion of the liquid and the motion in the 

diagram is that in one ease the paths are circular, and in the 

other they differ more or less from that form. 

When the energy is proportional to -f- if the curves of 

constant energy are circles, and the period is independent of 

the energy. There is then no tendency toward a state of sta¬ 

tistical equilibrium. The diagram turns about the origin with¬ 

out change of form. This corresponds to the case of hquid 

motion, when the liquid revolves with a unifonn angular 

velocity like a rigid solid. 

The analogy between the motion of an ensemble of systems 

in an extension-in-phase and a steady current in an incompres¬ 

sible liquid, and the diagrammatic representation of the case 

of one degree of freedom, which appeals to our geometrical in¬ 

tuitions, may be sufficient to show how the conservation of 

density in phase, which involves the conservation of the 
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avenigo value of tlie index (jf probability of phase, is consist¬ 

ent with au approach to a limiting condition in which that 

average value is less. We might perhaps fairly infer fi'oiii 

such (;onsideration.s a.s have been adduced that an approacli 

to a limiting condition of statistical equilibrium is the general 

rule, when the initial condition is not of that character. But 

the subject is of such importance that it seems desirable to 

give it farther consideration. 

Let us suppose that the total extension-in-phase for the 

kind of system considered to be divided into equal elements 

(1) V) which are very small but not infinitely small. Let us 

imagine an ensemble of systems distributed in this extension 

in a manner represented by the index of probability r], which 

is an arbitrary function of the phase subject only to the re¬ 

striction expressed by equation (46) of Chapter I. We shall 

suppose the elements DV to be so small that rj may in gen¬ 

eral be regarded as sensibly constant within any one of them 

at the mitial moment. Let the path of a system be defined as 

the series of phases through which it passes. 

At the initial moment (d) a ceidain system is in an element 

of extension DV. Subsequently, at the time f", the same 

system is in the element DV". Other systems which were 

at fii-st in D V will at the time t" be in D V", but not all, 

probably. The systems which were at first in DV will at 

the time t" occupy an extensioii-in-phase exactly as large as at 

first. But it will probably be distributed among a very great 

number of the elements (D V) into which we have divided 

the total extension-in-phase. If it is not so, we can generally 

take a later time at which it will be so. There will be excep¬ 

tions to thi.s for particular laws of motion, but we will con¬ 

fine ourselves to what may fairly be called the general case. 

Only a very small part of the systems initially in D V will 

be found in D V" at the time i", and those which are found in 

DV' at that time were at the initial moment distributed 

among a very large number of elements T) V. 

What is important for our purpose is the value of r/, the 

index of probability of phase in the element D V" at the time 
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t". In the part of DV' occupied by systems which at the 

time tf wore in DV the value of xj will bo the same us its 

value in D V' at the time t', whicdi we shall call rj'. In the 

parts of D V" occupied by systems which at f were in ele¬ 

ments very near to DV v/q may suppose the value of ?? to 

vary little from r]'. We cannot assume this in regard to puits 

of D V" occupied by systems which at if were in elements 

remote from DV. We want, therefore, some idea of the 

nature of the extension-in-phase occupied at t' by the sys¬ 

tems which at t" will occupy D V'. Analytically, the prob¬ 

lem is identical with finding the extension occupied at f," 

by the systems which at t' occupied D V. Now the systems 

in D V" which lie on the same path as the system first con¬ 

sidered, evidently arrived at D V" at nearly the same time, 

and must have left DV' at nearly the same time, and there¬ 

fore at t' were in or near DV. We may therefore take rj' as 

the value for these systems. The same essentially is true of 

systems in D V" wliich lie on paths very close to the path 

already considered. But with respect to patlis passing through 

D V and D V', but not so close to the first path, we cannot 

assume that the time required to pass from DV to DV" is 

nearly the same as for the first path. The difference of the 

times required may be small in comparison with but as 

thi.s interval can be as large as we choose, the difference of the 

times required in the different path.s has no limit to its pos¬ 

sible value. Now if the ease were one of statistical equilil>- 

rium, the value of rj would be constant in any path, and if all 

the paths which pass through D V" also pass through or near 

D V', the value of tj throughout D V" will vary little from 

7)'. But when the case is not one of statistical equilibrium, 

we cannot draw any such conclusion. The only conclusion 

which we can draw with respect to the phase at t' of the sys¬ 

tems which at t" are in DV" is tliat they are nearly on the 

same path. 

Now if we should make a new estimate of indices of prole 

abdity of phase at the time t", using for this purpose the 

elements DV, — that is, if we should divide the nimiber of 
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systems in 2> F”, for example, by the total number of systems, 

and also by the exterision-in-phase of the element, and take 

the logarithm of the qiujtieiit, we would get a number which 

would be less than the average value of rj for the systems 

within DV” based on the distributitjn in phase at the time t'.* 

H ence the average value of ■?; for the whole ensemble of 

systems based on the distribution at t" will be less than the 

average value based on the distribution at t'. 

Wo must not forget that there are exceptions to tliis gen¬ 

eral rule. These exceptions are in eases in which the laws 

of motion are such that systems having small differences 

of phase will continue always to have small differences of 

phase. 

It is to be observed that if the average index of probability in 

an ensemble may be said in some sense to have a less value at 

one time than at another, it is not necessarily priority in time 

which determines the greater average index. If a distribution, 

which is not one of statistical equilibrium, should be given 

for a time t', and the distribution at an earlier time t" should 

be defined as that given by the corresponding phases, if we 

increase the interval leaving t' fixed and taking t" at an earlier 

and earlier date, the distribution at t" will in general approach 

a limiting distribution which is in statistical equilibrium. The 

determining difference in such eases is that between a definite 

distribution at a definite time and the limit of a varying dis¬ 

tribution when the moment considered is carried either forward 

or backward indefinitely, f 

But while the distinction of prior and subsequent events 

may be immaterial with respect to mathematical fictions, it is 

quite otherwise with respect to the events of the real world. 

It should not be forgotten, when our ensembles are chosen to 

illustrate the probabilities of events in the real world, that 

* See Chapter XI, Theorem IX. 

t One may compare the kinematical truism that when two points are 

moving with uniform velocities, (with the single exception of the case where 

the relative motion is zero,) their mutual distance at any definite time is les.s 

than for i = co, or i = — co. 
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vvliile the probabilities of subsequent events may often be 

detenniued from the probabilities of prior events, it is rarely 

the case that probabilities of prior events can be determined 

from those of subsequent events, for we are rarely justified in 

excluding tlie consideration of the antecedent probability of 

the prior events. 

It is worthy of notice that to take a .system at I’andom from 

an ensemble at a date chosen at random from several given 

dates, t'i t", etc., is practically the same thing as to take a sys¬ 

tem at random from the ensemble composed of all the system.s 

of the given ensemble in their phases at tire time t', together 

with the same systems in their phases at the time t", etc. By 

Theorem VIII of Chapter XI this will give an ensemble in 

which the average index of probability will be less than in 

the given ensemble, except in the case when the distribution 

in the given ensemble is the same at the times I', t", etc. 

Consequently, any indefiniteness in the time in which we take 

a system at random from an ensemble has the practical effect 

of diminishing the average index of the ensemble from which 

the system may be supposed to be di’awn, except when the 

given ensemble is in statistical equilibrium. 



CHAPTER XriL 

EFFECT OF VARIOUS PROCESSES ON AN ENSEMBLE OP 

SYSTEMS. 

In the last chapter and in Chapter I we have considered the 

changes which take place in the course of time in an ensemble 

of isolated systems. Let us now proceed to consider the 

changes which will take place in an ensemble of systems under 

external influences. These external influences will be of two 

kind.s, the variation of the coordinates which we have called 
external, and the action of other ensembles of systems. The 

essential difference of the two kinds of influence consists in 

this, that the bodies to which the external coordinates relate 

are not distributed in phase, while in the case of interaction 

of the systems of two ensembles, we have to regard the fact 

that both are distributed in phase. To find the effect pro¬ 

duced on the ensemble with which we are principally con¬ 

cerned, we have therefore to consider single values of what 

we have called external coordinates, but an infinity of values 

of the internal coordinates of any other ensemble with which 

there is interaction. 

Or, — to regard the subject from another point of view, — 

the action between an unspecified system of an ensemble and 

the bodies represented by the external coordinates, is the 

action between a system imperfectly detennined with respect 

to phase and one which is perfectly determined; while the 

interaction between two unspecified systems belonging to 

different ensembles is the action between two systems both of 

wliich are imperfectly determined with respect to phase.* 

We shall suppose the ensembles which we consider to be 

distributed in phase in the manner described in Chapter I, and 

In the development of the subject, we shall find that this distinction 

corresponds to the distinction in thermodynamics between mechanical and 

thermal action. 
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represented by the notations of that chapter, especially by the 

index of probability of pliase (t)'). There are therefore 2 n 

independent variations in the phases which constitute tlie 

ensembles considered. Tliis excludes ensembles like the 

microcanonical, in which, as energy is constant, there are 

only 2 M — 1 independent variations of phase. This seems 

necessary for the purposes of a general discussion. For 

although we may imagine a microcanonical ensemble to have 

a permanent existence when isolated from external influences, 

the effect of such influences would generally be to destroy the 

uniformity of energy in the ensemble. Moreover, since the 

microcanonical ensemble may be regarded as a limiting case of 

such ensembles as are described in Chapter I, (and that in 

more than one way, as shown in Chapter X,) the exclusion is 

rather formal than real, since any properties which belong to 

the mierocanonioal ensemble could easily be derived from those 

of the ensembles of Chapter I, which in a certain sense may 
be regarded as representing the general case. 

Let us first consider the effect of variation of the external 

coordinates. We have already had occasion to regard these 

quantities as variable in the differentiation of certain equations 

relating fx) ensembles distributed according to certain laws 

called canonical or microcanonical. That vwiation of the 

external coordinates was, however, only carrying the atten¬ 

tion of the mind from an ensemble with certain values of the 

external coordinates, and di.stributed in phase according to 

some general law depending upon those values, to another 

ensemble with different values of the external coordinates, and 

with the distribution changed to conform to these new values. 
What we have now to consider is the effect which would 

actually result in the course of time in an ensemble of systems 
in which the external coordinates should be varied in any 

arbitrary manner. Let us suppose, in the first place, that 

these coordinates are varied abruptly at a given instant, being 

constant both before and after that instant. By the definition 

of the external coordinates it appears that this variation does 

not affect the phase of any system of the ensemble at the time 
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wlicii it takes place. Therefore it does not affect the index of 
probability of phase (jj') of any system, or the average value 
of the index (?/) at tliat time. And if these quantities are 
constant in time before the variation of the external coordi¬ 
nates, and after that variation, their constancy in time is not 
interrupted by that variation. In fact, in tiie demonstration 
of the comservation of probability of phase in Chapter 1, the 
variation of the external cooitlinates was not excluded. 

But a variation of the external coordinates will in general 
disturb a previously existing state of statistical equilibrium. 
For, although it does not affect (at the first instant) the 
distribution-in-phase, it does affect the condition necessary for 
equilibrium. This condition, as we have seen in Chapter IV, 
is that the index of probability of phase shall be a function of 
phase which is constant in time for moving systems. Now 
a change in the external coordinates, by changing the forces 
which act on the systems, will change the nature of the 
functions of phase which are constant in time. Therefore, 
the distribution in phase which was one of statistical equi¬ 
librium for the old values of the external coordinates, will not 
be such for the new values. 

Now we have seen, in the last chapter, that when the dis¬ 
tribution-in-phase is not one of statistical equilibrium, an 
ensemble of systems may, and in general will, after a longer or 
shorter time, come to a state which may be regarded, if very 
small differences of phase are neglected, as one of statistical 
equilibrium, and in which consequently the average value of 
the index (77) is less than at first. It is evident, therefore, 
that a variation of the external coordinates, by disturbing a 
state of statistical equilibrium, may indirectly cause a diminu¬ 
tion, (in a certain sense at least,) of the value of 77. 

But if the change in the external coordinates is very small, 
the change in the distribution necessary for equilibrium will 
in general be correspondingly small. Hence, the original dis¬ 
tribution in phase, since it differs little from one which wordd 
be in statistical equilibrium with the new values of the ex¬ 
ternal coordinates, may be supposed to have a value of v 
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which differs by a small quantity of the second order fiom 

the minimum value which characterizes the state of statistical 

equilibrium. And the dimmutioii in the average index result¬ 

ing in the course of time from the very small change in tlui 

external coordinates, cannot exceed this small quantity of 

the second order. 

Hence also, if the change in the external coordinate.s of an 

ensemble initially in statistical equilibrium consist.s in suc- 

ees.sive very small changes separated by very long intervals of 

time in which the disturbance of statistical equilibrium be¬ 

comes sensibly effaced, tlie final diminution in the average 

index of probability will in general be negligible, altiiough the 

total change in the external cohidinates is large. Tlie result 

will be the same if the change in the external coordinates 

takes place continuously but sufficiently slowly. 

Ev'en in cases in which there is no tendency toward the 

restoration of statistical equilibrium in the lapse of time, a varia¬ 

tion of external coordinates which would cause, if it took 

place in a short time, a great disturbance of a previous state 

of equilibrium, may, if sufficiently distributed in time, produce 

no sensible disturbance of the statistical equilibrium. 

Thus, in the case of three degrees of freedom, let the systems 

be heavy points suspended by elastic massless cords, and let the 

ensemble be distributed in phase with a density proportioned 

to some function of the energy, and therefore in statistical equi¬ 

librium. For a change in the external coordinates, wo may 

take a horizontal motion of the point of suspension. If this 

is moved a given distance, the re.sulting disturbance of the 

statistical equilibriiun may evidently be diminished indefi¬ 

nitely by diminishing the velocity of the point of suspension. 

This will be true if the law of elasticity of the string is such 

that the period of vibration is independent of the energy, in 

which ca.se there is no tendency in the course of time toward 

a state of statistical equilibrium, as well as in the more general 

ca.se, in which there is a tendency toward stati-stical equilibrium. 

That something of this kind will be true in general, the 

following considerations will tend to show. 
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We define a path as the series of phases through which a 

system passes in the course of time wlu;n tlie external co¬ 

ordinates liave fixed values. When the external corirdinates 

are varied, paths are changed. The path of a phase is the 

path to which that phase belongs. WTth reference to any 

ensemble of systems we shall denote by J) ^ tlie average value 

of the density-in-phase in a path. TJiis implies that we have 

a measure for comparing different portions of the path. We 

shall suppose the time required to traverse any portion of a 

path to be its measure for the purpose of determining this 

average. 

With this understanding, let us suppose that a certain en¬ 

semble is in statistical equilibrium. In every clement of 

extension-in-phase, therefore, the density-in-phase D is equal 

to its path-average 2)[p. Let a sudden small change be made 

in the external coordinates. The statistical equilibrium will be 

disturbed and we shall no longer have I) = 7?]^ everywhere. 

This is not because D is changed, but because is changed, 

the paths being changed. It is evident that ii D > .5},, in 

a part of a path, we shall have D < in other parts of the 

same path. 

Now, if we should imagine a further change in the external 

eobrdinates of the same kind, we should expect it to produce 

an effect of the same kind. But the manner in which the 

second effect will be superposed on the first will be different, 

according as it occurs immediately after the first change or 

after an interval of time. If it occurs immediately after the 

first change, then in any element of phase in which the first 

change produced a positive value al I) - the second change 

will add a positive value to the first positive value, and where 

D - Ulj, was negative, the second change will add a negative 

value to the first negative, value. 

But if we wait a sufficient time before making the second 

change in the external codrdinates, so that systems have 

pa.ssed from elements of phase in which D — was origi¬ 

nally positive to elements in which it was originally negative, 

and vice versa, (the systems carrying with them the values 
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oi D - ,) the positive values oi JJ - caused t)y the 

second change ttdll be iu part superposed ou negative values 

due to the first change, and vice versa. 

The disturbance of statistical equihbiium, therefore, pro¬ 

duced by a given cliange in the values of the external co¬ 

ordinates may be very much diininislied by dividing the 

change into two parts separated by a sufficient interval of 

time, and a sufficient interval of time for this purpose is one 

in wluch the phases of the inrhvidual systems are entirely 

unlike the first, so that any individual system is differently 

affected by the change, although the whole ensemble is af¬ 

fected in nearly the same way. Since there is no limit to the 

diminution of the disturbance of equilibrium by division of 

the change in the external coordinates, we may suppose as 

a general rule that by diminishing the velocity of the changes 

in the external coordinates, a given change may be made to 

produce a very small disturbance of statistical equilibrium. 

If we write n}' for the value of the average index of probability 

before the variation of the external coordinates, and r)' for the 

value after this variation, we shall have in any case 

"“if ^ ~r 

V 

as the simple result of the variation of the external coordi¬ 

nates. This may be compared with the thermodynamic the¬ 

orem that the entropy of a body cannot be diminished by 

mechanical (as distinguished from thermal) action.* 

If W'e have (approximate) statistical equilibrium between 
the times f and t" (coiTesponding to and ^"), we shall Lave 

approximately 
? = v") 

which may be compared with the thermodynamic theorem that 

the entropy of a body is not (sensibly) affected by mechanical 

action, during which the body is at each instant (sensibly) in 

a state of thermodynamic equilibrium. 

Approximate stati.stical equilibrium may usually be attained 

♦ Tlie correspondences to which the reader's attention is called are between 

— ij and entropy, and between & and temperature. 
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by a sufficiently slow variation of the external coordinates, 

just as appnnxirnate thennotlynamic equilibrium may' usually 

be attained by s\rfficient slowness in the mechanical operations 

to which the body is subject. 

We now pass to the consideration of the effect on an en¬ 

semble of systems which is produced by the action of other 

en.seiubles with wliich it is brought into dynamical connec¬ 

tion. In a previous chapter * we have iniagincd a dynamical 

connection arbitrarily created between the systems of two 

ensembles. We shall now regard the action between the 

systems of the two ensembles as a result of the variation 

of the external coordinates, which causes such variations 

of the internal coordinates as to bring the system.s of the 

two ensembles within the range of each other’s action. 

Initially, we suppose that we have two separate ensembles 

of .systems, and The numbers of degrees of freedom 

of the systems in the two ensembles will be denoted by Wj and 

n,^ respectively, and the probability-eoefficients by «''> and 

Now we may regard any system of the first ensemble com¬ 

bined with any system of the second as forming a single 

system of -1- degrees of freedom. Let us consider the 

ensemble {E^^ obtained by thus combining each system of the 

first ensemble with each of the second. 

At the initial moment, which may be specified by a single 

accent, the probability-coefficient of any phase of the combined 

systems is evidently the product of the probability-coefficients 

of the phases of which it is made up. This may be expressed 

by the equation, 

e^' = e”*' e”'’, (455) 

or = 171' -I- 1;/, (456) 

which gives >712' = V + (457) 

The forces tending to vary the internal coordinates of the 

combined systems, together with those exerted by either 

system upon the bodies represented by the coordinates called 

* See Chapter IV, page 37. 
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external, may be derived from a hingk; force-function, vrliieli, 

taken negatively, we slmll call the potential energy of the 

combined aystems and denote by ifnt we suppose tliat 

initially none of the systems of the two ensemliles jE’i and 

J&2 come w'itlun range of each other’s accion, so that the 

jjotential energy of the combined system falls into two parts 

relating separately to the systems which are combined. I'he 

same is obviously true of the kinetic energy of tlie combined 

compound system, and therefore of its total energy. This 

may be expressed by the equation 

£12^ = £1 + e/, (458) 

Avhich gives £12' = £1' + £■!• (459) 

Let us now suppose that in the course of time, owing to the 

motion of the bodies represented by the coordinates called 

external, the forces acting on the systems and consequently 

their positions are so altered, that tlie systems of the ensembles 

E.^ and E^ are brought within range of each other's action, 

and after such mutual influence has lasted for a time, by a 

further change in the external coordinates, perhaps a return 

to their original values, the sy.stems of the two original en¬ 

sembles are brought again out of range of each other’s action. 

Finally, then, at a time specified by double accents, we shall 

have as at first 

£12" = V + ?2". (460) 

But for the indices of probability we must write * 

■qx' + Vi £ Vi "' (461) 

The considerations adduced in the last chapter show that it 

is safe to write 

ViJ' i ViJ- (462) 
We have therefore 

Vi" + vJ’ ^ Vi' + (463) 

which may be compared with the thermodynamic theorem that 

* See Chapter XI, Theorem VIL 
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the tliermal contact of two bodies may increase but cannot 

diminish the sum of their entropies. 

Let us especially consider the case in which the two original 

ensembles were both canonically distributed in phase with the 

respective moduli (H)j and @2. We have then, by Theorem III 

of Chapter XI, 

+ vi" + (464) 

y + I' ^ V." + (465) 

Whence with (463) we have 

eJ f ' e c " 
!L 4. !l < !i_ I !?_ 
@1 fc)j - 01 02 

(4G6) 

or ^0. (467) 

If we write W for the average work done by the combined 

systems on the external bodies, we have by the principle of 

the conservation of energy 

— €12' — £12" — ei' — fi" + €2' — 62". (468) 

Now if Wis negligible, we have 

e/' - ii' = - (€2" - £7) (469) 

and (467) shows that the ensemble which has the greater 

modulus must lose energy. This result may be compared to 

the thermodynamic principle, tliat when two bodies of differ¬ 

ent temperatures are brought together, that which has tire 

higher temperature will lose energy. 

Let us next suppose that the ensemble is originally 

canonically distributed with the modulus 0^, but leave the 

distribution of the other arbitrary. We have, to determine 

the result of a similar process, 

■^1" + Vi' S: Vt! + vJ 
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Hence 
e» 

-1- — 
©2 

(470) 

which may be written 1 
1 

A
ll 

i ^
 

! 

! 

1 1 
®

 

(471) 

Tliis may be compared with the thermodynamic principle that 

when a body (which need not be in thermal equilibrium) is 

brought into thermal contact with another of a given tempera¬ 

ture, the increase of entropy of the first cannot be less (alge¬ 

braically) than the loss of heat by the second divided by its 

temperature. Where W is negligible, we may write 

Now, by Theorem III of Chapter XI, the quantity 

has a minimum value when the ensemble to which and ej 

relate is distributed canonically with the modulus If the 

ensemble had originally this distribution, the sign < in (472) 

would be impossible. In fact, in this case, it would be easy to 

show that the preceding formulae on which (472) is founded 

would all have the sign = . But when the two ensembles are 

not both originally distributed canonically with the same 

modulus, the formulae indicate that the quantity (478) may 

be diminished by bringing the ensemble to which 6j and 

relate into connection with another which is canonically dis¬ 

tributed with modulus ©j, and therefore, that by repeated 

operations of tliis kind the ensemble of which the original dis¬ 

tribution was entirely arbitrary might be brought approxi¬ 

mately into a state of canonical distribution with the modulus 

©g. We may compare this with the thermodynamic principle 

that a body of which the original thermal state may be entirely 

arbitrary, may be brought approximately into a state of ther¬ 

mal equilibrium with any given temperature by repeated con¬ 

nections with other bodies of that temperature. 
11 
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Let us now suppose that we have a certain number of 

ensembles, JE^, etc., distributed canotiically with the 

respective moduli , @2, etc. By variation of the exter¬ 

nal coordinates of the ensemble , let it be brought into 

connection with , and then let the connection be broken. 

Let it then be brought into connection with , and then let 

that connection be broken. Let this process be continued 

with respect to the remaining ensembles. We do not make 

the assumption, as in some cases before, tliat the work connected 

with the variation of the external coordinates is a negligible 

quantity. On the contrary, we wish especially to consider 

the case in which it is large. In the final state of the ensem¬ 

ble -Eg, let us suppose that the external coordinates have been 

brought back to their original values, and that the average 

energy (gg) is the same as at first. 

In our usual notations, using one and two accents to dis¬ 

tinguish original and final values, we get by repeated applica¬ 

tions of the principle expressed in (463) 

V + -171' + ijs' + etc. > 7)„" + vi" + vJ' + etc. (474) 

But by Theorem III of Chapter XI, 

+ + (476) 

tn" + (476) 

"■ #f I *'2 , ^2 
V -b > V.' + Q > 

Hence f?!! + q. fL + etc. > ^ -f ^ -h ^ -b etc. 
©» @1 ®2 - ®a ^ ^ 

or, since eo' = fo"> 

(477) 

(478) 

If we write W for the average work done on the bodies repre¬ 

sented by the external coordinates, we have 
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1,' - e," + 1^' - IJ’ + etc. = W. (480; 

If -Fj, and are the only ensembles, we Lave 

JVS—.-?(€d-«,'0- (481) 

It will be observed that the relations expre.ssed in the last 

three formulae between W, Cj — e^", e^' — e,/', etc., and ftj, 

02; etc. are precisely those which hold in a Carnot’s cycle foi- 

the work obtained, the energy lost by the several bodies which 

serve as heaters or coolers, and their initial temperatures. 

It will not escape the reader’s notice, that while from one 

point of view' the operations which are here described are quite 

beyond our powers of actual performance, on account of the 

impossibility of handling the immense number of systems 

which are involved, yet from another point of view the opera¬ 

tions described are the most simple and accurate means of 

representing what actually takes place in our simplest experi¬ 

ments in thermodynamics. The states of the bodies which 

we handle are certainly not known to us exactly. What we 

know about a body can generally be described most accurately 

and most simply by saying that it is one taken at random 

from a great number (ensemble) of bodies which are com¬ 

pletely described. If we bring it into connection with another 

body concerning which we have a similar limited knowledge, 

the state of the two bodies is properly described as that of a 

pair of bodies taken from a great number (ensemble) of pairs 

which are formed by combining each body of the first en¬ 

semble with each of the second. 

Again, when we bring one body into thermal contact with 

another, for example, in a Carnot’s cycle, when we bring a 

mass of fluid into thermal contact with some other body from 

which we wish it to receive heat, we may do it by moving the 

vessel containing the fluid. This motion is mathematically 

expressed by the variation of the coordinates which determine 

the position of the vessel. We allow ourselves for the pur¬ 

poses of a theoretical discussion to suppose that the walls of 

this vessel are incapable of absorbing heat from the fluid. 
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Yet while we exclude the kind of action which we call ther¬ 

mal tetweeii the fluid and the containing veasei, we allow the 

kind which we call work in the narrower sense, which takes 

place when the volume of the fluid is changed by the motion 

of a piston. This agrees with what we have supposed in 

regard to the external cooixUiiates, which we may vary in 

any arbitrajy manner, and are in this entirely unlike the co¬ 

ordinates of the second ensemble with which we bring the 

first into connection. 

When heat passes in any thermodynamic experiment between 

the fluid principally considered and some other body, it is 

actually absorbed and given out by the walls of the ves.sel, 

which will retain a varying quantity. This is, however, a 

disturbing circumstance, which we suppose in some w'ay made 

negligible, and actually neglect in a theoretical discussion. 

In our case, we suppose the walls incapable of absorbing en¬ 

ergy, except through the motion of the external eocirdinates, 

but that they allow the systems which they contain to act 

directly on one another. Properties of this kind are mathe¬ 

matically expressed by supposing that in the vicinity of a 

certain surface, the position of which is determined by certain 

(external) coordinates, particles belonging to the system in 

question experience a repulsion from the surface increasing so 

rapidly with nearness to the surface that an infinite expendi¬ 

ture of energy would be required to carry them through it. 

It is evident that two systems might be separated by a surface 

or surfaces exerting the proper forces, and yet approach each 

other closely enough to exert mechanical action on each other. 



CHAPTER XIV. 

DISCUSSION OF THERMODYNAMIC ANALOGIES. 

If we wish to find in rational meehanios an a priori founda¬ 

tion for the principles of thermodynamics, we must seek 

mechanical definitions of temperature and entropy. The 

quantities thus defined must satisfy (under conditions and 

with Hmitations which again must be specified in the language 

of mechanics) the differential equation 

de — Tdrj — Ai da^ — da,! — etc,, (482) 

where e, T, and 97 denote the energy, temperature, and entropy 

of the system considered, and Ajdaj, etc., the mechanical work 

(in the narrower sense in which the term is used in thermo¬ 

dynamics, i. e., with exclusion of thermal action) done upon 

external bodies. 

This implies that we are able to distinguish in mechanical 

terms the thermal action of one system on another from that 

which we call mechanical in the narrower sense, if not indeed 

in every case in which the two may be combined, at least so as 

to specify cases of thermal action and cases of mechanical 

action. 

Such a differential equation moreover impHes a finite equa¬ 

tion between e, ij, and a^, a^, etc., which may be regarded 

as fundamental in regard to those properties of the system 

which we call thermodynamic, or which may be called so from 

analogy. This fundamental thermodynamic equation is de¬ 

termined by the fundamental mechanical equation which 

expresses the energy of the system as function of its mo¬ 

menta and coordinates with those external coordinates (a^, a^, 

etc.) which appear in the differential expression of the work 

done on external bodies. We have to show the mathematical 

operations by which the fundamental thermodynamic equation, 
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which in general is an e(iuatioii of few variables, is derived 

from the fundamental mechanical equation, which in the ease 

of the bodies of nature is one of an enormous number of 

variables. 

We have also to enunciate in mechanical terms, and to 

prove, what we call the tendency of heat to fjass from a sys¬ 

tem of higher temperature to one of lower, and to show tliat 

this tendency vanishes with respect to systems of the same 

temperature. 

At least, we have to show by a priori reasoning that for 

such systems as the material bodies wliieh nature presents to 

us, these relations hold with such approximation that they 

are sensibly true for human faculties of observation. This 

indeed is all that is really necessary to establish the science of 

thermodynamics on an a imori basis. Y et we will naturally 

desire to find the exact expression of those principles of which 

the laws of thermodynamics are the approximate expression. 

A very little study of the statistical properties of conservative 

systems of a finite number of degrees of freedom is sufficient 

to make it appear, more or less distinctly, that the general 

laws of thermodynamics are the limit toward which the exact 

laws of such systems approximate, when their number of 

degrees of freedom is indefinitely increased. And the problem 

of finding the exact relations, as distinguished from the ap¬ 

proximate, for systems of a great number of degrees of free¬ 

dom, is practically the same as that of finding the relations 

which hold for any number of degrees of freedom, as distin¬ 

guished from those which have been established on an em¬ 

pirical basis for systems of a great number of degrees of 

freedom. 

The enunciation and proof of these exact laws, for systems 

of any finite number of degrees of freedom, has been a princi¬ 

pal object of the preceding discussion. But it should be dis¬ 

tinctly stated that, if the results obtained when the numbers 

of degrees of freedom are enormous coincide sensibly with 

the general laws of thermodynamics, however interesting and 

significant this coincidence may be, we are still far from 
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having explained the phenomena of nature with respect to 

these laws. For, as compared with the case of iialure, tlic 

systems which we have considered are of an ideal siuiplic-ity. 

Although our orrly assumption is that we are considering 

conservative systems of a liuite number of degrees of freedom, 

it would seem that this is assimiing far too much, so far as the 

bodies of rrature are concerned. The phenomerra of radiant 

heat, which certainly slrould rrot be neglected in any- complete 

system of thennodynamics, and the electrical phenomena 

associated with the combirratiorr of atoms, seem to slrotv that 

the hypothesis of systems of a finite number of degrees of 

freedom is inadequate for the explanation of the projrerties of 

bodies. 

Kor do the results of such assumptions in every^ detail 

appear to agree with experierree. We should expect, f(jr 

example, that a diatomic gas, so far as it eotdd be treated 

independently of the phenomerra of radiation, or of any sort of 

electrical manifestations, would liave six degrees of freedom 

for each molecule. But the beliavior of such a gas seems to 

indicate not more than five. 

But although these difficulties, long recognized by physi¬ 

cists,* seem to prevent, in the present state of science, any 

satisfactory explanation of the phenomena of thennodynamics 

as presented to us in nature, the ideal case of systems of a 

finite nirmher of degrees of freedom remains as a subject 

which is certainly not devoid of a theoretical interest, and 

which may serve to point the way to the solution of tlie far 

more difficult problems presented to us by nature. And if 

the study of the statistical properties of such systems gives 

us an exact expression of laws which in the limiting case take 

the form of the received laws of thermodynamics, its interest 

is so much the greater. 

Now we have defined what wc have called the modulus (B) 

of an ensemble of systems canonicidly distributed in phase, 

and what we have called the index of probability^ (?j) of any 

phase in such an ensemble. It has been shown that between 

* See Boltzmann, Sitzb. der Wiener Akad., Bd, LXIII., S. 418, (1871). 
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the modulus (@), the external coordinates (eij, etc.), and the 

average values in the ensemble of the energy («), the index 

of probability (rj), and the external forces (^Ij, etc.) exerted 

by the systems, the following differential equation will hold: 

dc = — — Ai da^ — — etc. (483) 

This equation, if we neglect the sign of averages, is identical 

in fonn with the thermodynamic equation (482), the modulus 

(0) corresponding to temperature, and the index of probabil¬ 

ity of phase with its sign reversed corresponding to entropy.* 

We have also shown that the average square of the anoma¬ 

lies of 6, that is, of the deviations of the individual values from 

the average, is in general of the same order of magnitude as 

the reciprocal of the number of degrees of freedom, and there¬ 

fore to human observation the individual values are indistin¬ 

guishable from the average values when the number of degrees 

of freedom is very gieat.f In tlii.s case also the anomalies of t) 

are practically insensible. The same is true of th e anomalies of 

the external forces (Tj, etc.), so far as these are the result of 

the anomalies of energy, so that when these forces are sensibly 

determined by the energy and the external coordinates, and 

the number of degrees of freedom is very great, the anomalies 

of these forces are insensible. 

The mathematical operations by which the finite equation 

between e, and , etc., is deduced from that which gives 

the energy (e) of a system in terms of the momenta ... ,p„') 

and coOrdinsrtes both internal ... g'n) and external (cui, etc.), 

are indicated by the equation 

all ( 

e ® . .Je ®dqi . . . dq„dpi, . . . dp„, (484) 

phases 

where i/* — ©»j -f i. 

We have also shown that when systems of different ensem¬ 

bles are brought into condition.s analogous to thermal contact, 

the average result is a passage of energy from the ensemble 

* Sec Chapter IV, pages 44, 45. t See ChapteT VII, pages 73-75. 
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of tlie greater modulus to that of the less, * or in ease of equal 

m'oduli, tliat we have a condition of statistical equilibrium in 

regard to the distribution of energy.-f 

Propositions have also been demonstrated analogous to 

those in thennodynamics relating to a Carnot’s cycle,J or to 

the tendency of entropy to increase, § especially when bodies 

of different temperature are brought into contact.|| 

We have thus precisely defined quantities, and rigorously 

demonstrated propositions, which hold for any number of 

degrees of freedom, and which, when the number of degrees 

of freedom (n) is enormously great, would appear to human 

faculties as the quantities and propositions of empirical ther¬ 

modynamics. 

It is evident, however, that there may be more than one 

quantity defined for finite values of n, which approach the 

same limit, when n is increased indefinitely, and more than one 

proposition relating to finite values of n, which approach the 

same limiting form for m = oo. There may be tlierefore, 

and there are, other quantities which may be thought to have 

some claim to be regarded as temperature and entropy with 

respect to systems of a finite number of degrees of freedom. 

The definitions and propositions which we have been con¬ 

sidering relate essentially to what we have called a canonical 

ensemble of systems. This may appear a less natural and 

simple conception than what we have called a microcanonical 

ensemble of systems, in which all have the same energy, and 

which in many cases represents simply the time-ensemble, or 

ensemble of phases through which a single system passes in 

the course of time. 

It may therefore seem desirable to find definitions and 

propositions relating to these microcanoniciil ensembles, which 

shall correspond to what in thermodynamics are based on 

experience. Now the differential equation 

de — V d log V — 27!c ~ da^ — etc., (485) 

* See Chapter XIII, page 100. t See Chapter IV, pages 35-37. 

t See Chapter XTTl, pngea 162, 163. § See Chapter XII, pages 143-151. 

11 See Chapter XIII, page 159. 
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whieli has been dornon.straled in Chapter X, and whicdi relates to 

a mieroeanonical ensemble, denoting the average value of 

ylj in such an ensemble, corresponds precisely to the thennody- 

iiamic equation, except for the sign of average applied to the 

external forces. But as the.se forces are not entirely deter- 

iniiied by the energy with the external cocirdinates, the use of 

average values is entirely germane to the subject, and affords 

the readiest meaii.s of getting perfectly determined Cjuantities. 

These averages, which are taken for a mieroeanonical ensemble, 

may seem from some points of view a more simple and natural 

conception than those which relate to a canonical ensemble. 

Moreover, the energy, and the quantity corresponding to en¬ 

tropy, are free from tire sign of average in this equation. 

The quantity in the equation which corresponds to entropy 

is log V, the quantity V being defined as the extension-in- 

phase within which the energy is less than a certain limiting 

value (e). This is certainly a more simple conception than the 

average value in a canonical ensemble of the index of probabil¬ 

ity of phase. Log V has the property that when it is constant 

de = — rtTIf — 137U da^ -t- etc., (48(5) 

which closely corresponds to the thermodynamic property of 

entropy, that when it is constant 

de =■ — Ay day — da^ -f etc. (487) 

The quantity in the equation which corresponds to tem- 

peratui-e is V, or dejd log V. In a canonical ensemble, the 

average value of this quantity is equal to the modulus, as has 

been shown by different methods in Chapters IX and X. 

In Chapter X it has also been shown that if the systems 

of a mieroeanonical ensemble consist of parts with separate 

energies, the average value of e—^ Vfor any part is equal to its 

average value for any other part, and to the uniform value 

of the same expression for the whole ensemble. This corre¬ 

sponds to the theorem in the theory of heat that in case of 

thermal equilibrium the temperatures of the parts of a body 

are equal to one another and to that of the whole body. 
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Since the energies of tlie parts of a body cannot supposed 

to remain absolutely constant, even where this is the case 

with respect to the whole body, it is evident that if we regard 

the temperature as a function of the energy, the taking of 

average or of probable values, or some other statistical process, 

must be used with reference to the parts, iu order to get a 

perfectly definite value corresponding to the notion of tem¬ 

perature. 

It is worthy of notice in this connection that the average 

value of the kinetic energy, either in a microcanonical en¬ 

semble, or in a canonical, divided by one half tlie number of 

degrees of freedom, is equal to V, or to its average value, 

and that this is true not only of the whole system which is 

distributed either mierocanonically or canonically, but also 

of any part, although the corresponding theorem relating to 

temperature hardly belongs to empirical thermodynamics, since 

neither the (inner) kinetic energy of a body, nor its number 

of degrees of freedom is immediately cognizable to our facul¬ 

ties, and we meet the gravest difficulties when we endeavor 

to apply the theorem to the theory of gases, except in the 

simplest case, that of the gases known as monatomic. 

But the correspondence between V or dejd log V and 

temperature is imperfect. If two isolated systems have such 

energies that 

d log d log F, ’ 

and the two systems are regarded as combined to form a third 

system with energy 

ei2 = Cl + €21 

we shall not have in general 

d€i2 dci d^z 

d log Vn ~ d log Fi~ d log Fa’ 

as analogy with temperature would require. In fact, we have 

seen that 

<^12_d6i _ dej 

d log Fii ~ d log FiPij “ d log Fj €,2 ’ 
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where the second and third memters of the equation denote 

average values in an ensemble in which the compound system 

is microcanonically distributed in phase. Let us suppose the 

two original systems to be identical in nature. Then 

= £2 = £i|«12 • 

The equation in question would require tliat 

d^i I 
Slog Fi^dlog 

i. e., that we get the same result, whether we take the value 

of de^/dlog Fj determined for the average value of ej in the 

ensemble, or take the average value of de^jdlog F[. This 

will be the case where dejd log is a linear function of ej. 

Evidently this does not constitute the most general case. 

Therefore the equation in question cannot be true in general. 

It is true, however, in some very important particular cases, as 

when the energy is a quadratic function of the p’s and j’s, or 

of the p’s alone.* When the equation holds, the case is anal¬ 

ogous to that of bodies in thermodynamics for which the 

specific heat for constant volume is constant. 

Another quantity which is closely related to temperature is 

d<^ Ide. It has been shown in Chapter IX tliat in a canonical 

ensemble, if w > 2, the average value of d(^lde is 1/©, and 

that the most common value of the energy in the ensemble is 

that for which d^jde — 1/0. The first of these properties 

may be compared with that of dejdlog V, which has been 

seen to have the average value 0 in a canonical ensemble, 

without restriction in regard to the number of degrees of 

freedom. 

With respect to microcanonical ensembles also, dj>[de has 

a property similar to what has been mentioned with respect to 

dejd log V. That is, if a system microcanonically distributed 

in phase consists of two parts with separate energies, and each 

♦ This last case is Important on account of its relation to the theory of 

gases, although it must in strictness be regarded as a limit of possible cases, 

rather than as a case which is itself possible. 
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with more than two degrees of freedom, the average values in 

the ensemble of d^/de for the two parts are equal to one 

another and to the value of same expression for the whole. 

In our usual notations 

j _ 

if > 2, and W2 > 2. 

This analogy with temperature has the same incompleteness 

which was noticed with respect to dejdlog V, viz., if two sys¬ 

tems have such energies (ej and e^) that 

d<i>i_ 

de, de^ ’ 

and they are combined to form a third system with energy 

^12 — *1 "h *2) 

we shall not have in general 

dtjiy 

C^6i2 dci (1^2 

Thus, if the energy is a quadratic function of the p’s and ^’s, 

we have * 
ni — 1 dcf>2 — 1 

d€.\ Cl dcg 62 

dcfti2_W12 — 1 __ -f- ti2 — 1 

dci2 ^12 + €2 

where Wi, , nij, are the numbers of degrees of freedom of the 

separate and combined systems. But 

d(j/>i _ d4>2 _ Ml -p >12 — 2 

dCj dc2 Cl -p €2 

If the energy is a quadratic function of the p’s alone, the case 

would be the same except that we should have 1 Mj , 2 | , 

instead of Mj , n^, n^^2- these particular cases, the analogy 

* See foot-note on page 93. We have here made the least value of the 

energy consistent with the values of the external coordinates zero instead 

of fa, as is evidently allowable when the external coordinates are supposed 

invariable. 
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between ihjdlag V and temperature would be complete, as has 

already been remarked. We should have 

dcj 6j tg 

(^logri~ni’ dlogFt^n^’ 

d€i2 Gi2 d^i d£2 

d log Vi2 «i2 d log Fi d log Fa ’ 

when the energy is a quadratic function of the p’s and y’s, and 

similar equations with | Wj , -^n^, ^ , instead of Jij, > »i3 7 

when the energy is a quadratic function of the p’s alone. 

More characteristic of di^l de are its properties relating to 

most probable values of energy. If a .system having two parts 

with separate energies and each with more than two degrees 

of freedom is microcanonically distributed in phase, the most 

probable division of energy between the parts, in a system 

taken at random from the ensemble, satisfies the equation 

d<^i_d(^2 

dii ’ 
(488) 

which corresponds to the thermodynamic theorem that the 

distribution of energy between the parts of a system, in case of 

thermal equilibrium, is such that the temperatures of the parts 

are equal. 

To prove the theorem, we observe that the fractional part 

of the whole number of systems which have the energy of one 

part (ej) between the limits and 6j'' is expressed by 

~4'Vl (' j 
e I e dei, 

'1' 

where the variables are connected by the equation 

ej + £2 = constant = £12. 

The greatest value of this expression, for a constant infinitesi¬ 

mal value of the difference e^" — sj', determines a value of ej, 

which we may call its most probable value. This depends on 

the greatest possible value of Now if Wj > 2, and 

Bg > 2, we shall have (j>^ = — co for the least possible value of 
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6j, and — CO for tlie least possible value of e.y Between 

these limits (f>^ and (j>.^ will be litiite and continuous. Hence 

4’i + 4>'2 have a maximum satisfying the equation (488). 

But if 7i.j < 2, or £ 2, dcbjclsj^ or dtp^jde^ may be nega¬ 

tive, or zero, for all values of ty or and can Iwidly be 

regarded as having properties analogous to temperature. 

It is also wortliy of notice that if a system which i.s micro- 

oanonically distributed in phase has three parts witli separate 

enetgies, and each with more than two degree.s of freedom, the 

most probable division of energy between these parts satisfies 

the equation 

(ki de, de, ' 

That is, this equation gives the most probable set of values 

of fj, £3, and £3. But it does not give the most probable 

value of ej, or of e^, or of eg. Thu.s, if the energies are quad¬ 

ratic functions of the p’a and q’s, the most probable division 

of energy is given by the equation 

Wi — l_7i2 — 1_— 1 

“ 61 ~ ej ■ 

But the most probable value of ei is given by 

W, — 1 _ 7*2 + «3 — 1 
^ €2 -f €3 ’ 

while the preceding equations give 

Ml — 1 _ ^2 4- TTs — 2 

*1 62 + £3 

These distinctions vanish for very great values of n^, 

For small values of these numbers, they are important. Such 

facts seem to indicate that the consideration of the most 

probable division of energy among the parts of a system does 

not afford a convenient foundation for the study of thermody¬ 

namic analogies in the case of systems of a small number of 

degrees of freedom. The fact that a certain division of energy 

is the most probable has really no especial physical importance,' 

except when the ensemble of possible divisions are grouped so 
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closely together that the most probable division may fiiirly 

represent the whole. This is in general the case, to a very 

close approximation, when n is enormorrsly great; it entirely 

fails when n is small. 

If we regard d<^jde as corresponding to the reciprocal of 

temperature, or, in other words, dej as corresponding to 

temperature, (j> will correspond to entropy. It has been defined 

as log (d V/de). In the considerations on which its definition 

is founded, it is therefore very similar to log V. We have 

seen that djtjdlo^V approaches the value unity when n is 

very great.* 

To form a differential equation on the model of the thermo¬ 

dynamic equation (482), in which dejd(f> shall take the place 

of temperature, and <j) of entropy, we may write 

or 
, dtp dcl> j dtj} 

= ~de + V- doi + da,i etc. (490) 

With respect to the differential coefficients in the last equa¬ 

tion, which corresponds exactly to (482) solved with respect 

to dr), we have seen that their average values in a canonical 

ensemble are equal to 1 /©, and the averages of A^(@, A^/€>, 

etc.f We have also seen that dejdfj) (or dcfilde) has relations 

to the most probable values of energy in parts of a mieroca- 

nonical ensemble. That (^de! da^^^a-, etc., have properties 

somewhat analogous, may be shown as follows. 

In a physical experiment, we measure a force by balancing it 

against another. If we should ask what force applied to in¬ 

crease or diminish would balance the action of the systems, 

it would be one which varies with the different systems. But 

we may ask what single force will make a given value of 

the most probable, and we shall find that under certain condi¬ 

tions idelda^^,,a. represents that force. 

* See Chapter X, pages 120, 121. 

t See Chapter IX, equations (321), (327). 
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I’o make the problem definite, let ns consider a sjstern con¬ 

sisting of the original system together with another liaving 

the coordinates «j, , etc., and forces A.^, etc., tending 

to increase those cocirdinates. These are in addition to the 

forces A^, A^, etc., exerted by the original system, and are de¬ 

rived from a force-function (—) by the equations 

de‘ 
AJ-. 

dej 
etc. 

dai ’ ’ 

For the energy of the whole system we may write 

E = e + e^' + i nil «i“ + i + etc., 

and for the extension-in-phase of the whole system witliin any 

limits 

/■ ■ ■ ■ . dq„ dai mi dai da^ da^ . . . 

or /■•■/ d^ ddi 'D'lri do^i do.^ do.^ > > > ^ 

or again ^dE dai dai da^ da^ . . ., 

since de — c?E, when Aj, ai, a^, a^, etc., are constant. If the 

limits are expressed by E and E + c^E, and + da^ , and 

a-i + da^, etc., the integral reduces to 

dE daiitii dai da^m^ da^ . . . 

The values of a^, a^, a^, etc., which make this expression 

a maximum for constant values of the energy of the whole 

system and of the differentials dE, da^, da^, etc.,are wliat may 

be called the most probable values of aj, aj, etc., in an ensem¬ 

ble in which the whole system is distributed microcanonically. 

To determine these values we have 

de^ = 0, 

when d{e -j- e,' + i m a,’ + i -p etc.) = 0. 

That is, dtfi =z 0, 

12 



178 rilERMODYNAMIC ANALOGIES. 

’when 

This requires 

da^ — Ai' da^ -f eto. + 771^ Oi da^ + etc. 

= 0, «3 = 0, etc., 

= 0. 

and etc. 

Thi.s show.s that for any given values of E, a^, a^, etc. 

, etc., represent the foroe.s (in tlie gen¬ 

eralized sense) which the external bodies would luive to exert 

to make these values of aj, etc., the most probable under 

the conditions specified. When the differences of the external 

forces 'which are exerted by the different sy.stems are negli¬ 

gible,— (delda^^^a7 etc., repre.sent the.se forces. 

It is certainly in the quantities relating to a canonical 

eii.semble, e, r/, , etc., Uj, etc,, that we find the most 

Complete correspondence with the quantities of the thermody¬ 

namic equation (482). Yet the conception itself of the canon¬ 

ical ensemble may seem to some artificial, and hardly gennane 

to a natural exposition of the subject; and the quantities 

d^F’ “1’ (d^Xa’ 
etc., a-j, etc., which are closely related to ensembles of constant 

energy, and to average and most probable values in such 

ensembles, and most of ’which are defined without reference 

to any ensemble, may appear the most natural analogues of 

the thermodynamic quantities. 

In regard to the naturalness of seeking analogies rvith the 

thermodynamic behavior of bodies in canonical or microca- 

nonioal ensembles of systems, much will depend upon how we 

approach the subject, especially upon the question whether we 

regard energy or temperature as an independent variable. 

It is very natural to take energy for an iudependent variable 

rather than temperature, because ordinary mechanics furnishes 

us with a perfectly defined conception of energy, whereas the 

idea of something relating to a mechanical system and corre- 
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spending to temperature is a notion but vagaely defined. Now 

if the stiite of a system Ls given by its energy' and the external 

coordinates, it is incompletely defined, altliougli its partial defi¬ 

nition is perfectly clear as far as it goes. The ensemble of 

phases microcanonically distributed, with the given values of 

tlie energy and the external coordinates, will I’epresent the im¬ 

perfectly defined system better than any' other ensemble or 

single phase. When we approach the subject fi'om this side, 

our theorems will naturally relate to average values, or most 

probable values, in such en.sembles. 

In this case, the choice between the variables of (485) or of 

(489) will be determined partly by the relative importance 

which is attached to average and probable values. It would 

seem that in general average values are the most Important, and 

that they lend themselves better to analytical transformations. 

This eonsideration would give the preference to the system of 

variables in wliicli log V is the analogue of entropy'. Moreover, 

if we make ^ the analogue of entropy, we are embarrassed by 

the necessity of making numerous exceptions for sy'stems of 

one or two degrees of freedom. 
On the other hand, the definition of may be regarded as a 

little more simple than that of log F, and if our choice is deter¬ 

mined by the simplicity of the definitions of the analogues of 

entropy and temperature, it would seem that the ^ system 

should have the preference. In our definition of these quanti¬ 

ties, V was defined first, and e* derived from V by' differen¬ 

tiation. This gives the relation of the quantities in the most 

simple analytical form. Yet so far as the notions are con¬ 

cerned, it is perhaps more natural to regard V a.s derived from 

6* by integration. At all events, e* may' be defined inde¬ 

pendently of V, and its definition may be regarded as more 

simple as not requiring the determination of the zero from 

which V is measured, which sometimes involves queistions 

of a delicate nature. In fact, the quantity may' exist, 

when the definition of V becomes illusory for practical pur¬ 

poses, as the integral by which it is determined becomes infinite. 

The case is entirely different, when we regard the tempera- 
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ture as an iudependent variable, and we have to consider a 

sj^steiu which is described as having a certain temperature and 

certain values for the external coordinates. Here also the 

state of the system is not completely defined, and will be 

better represented by an ensemble of phases than by any single 

phase. What is the nature of such an ensemble as will best 

represent the imperfectly defined state ? 

When we wish to give a body a certain temperature, we 

place it in a bath of the proper temperature, and when we 

regard what we call thermal equihbrium as established, we say 

that the body has the same temperature as the bath. Per¬ 

haps we place a .second body of standard character, which we 

call a thermometer, in the bath, and say that the first body, 

the bath, and the thermometer, have all the same temperature. 

But the body under such circumstances, as well as the 

bath, and the thermometer, even if they were entirely isolated 

from external influences (which it is convenient to suppose 

in a theoretical discussion), would be continually changing in 

phase, and in energy as well as in other respects, although 

our means of observation are not fine enough to perceive 

these variations. 

The series of phases through which the whole system run.s 

in the course of time may not be entirely determined by the 

energy, but may depend on the initial phase in other respects. 

In such eases the ensemble obtained by the microcanonical 

distribution of the whole system, which includes all possible 

time-ensembles combined in the proportion which seems least 

arbitrary, will represent better than any one time-ensemble 

the effect of the bath. Indeed a single time-ensemble, when 

it is not also a microcanonical ensemble, is too ill-defined a 

notion to serve the purposes of a general discussion. We 

wdl therefore direct our attention, when we suppose the body 

placed in a bath, to the microcanonical ensemble of phases 

thus obtained. 

If we now suppose the quantity of the substance forming 

the bath to be increased, the anomalies of the separate ener¬ 

gies of the body and of the thermometer in the microcanonical 
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ensemble will be increased, but not without limit. The anom¬ 

alies of the energy of the bath, considered in comparison with 

its whole energy, diminish indefinitely as the quantity of the 

bath is increased, and become in a sense negligible, when 

the quantity of the bath is sufficiently increased. The 

ensemble of phases of the body, and of the thermometer, 

approach a standard form as the quantity of the bath is in¬ 

definitely increased. This limiting form is easily shown to be 

what we have described as the canonical distribution. 

Let us write e for the energy of the whole ^stem consisting 

of the body first mentioned, the bath, and the thermometer 

(if any), and let us first suppose this system to be distributed 

canonically with the modulus @. We have by (205) 

and since ,0, 

de _n de 

d& ” 

If we write Ae for the anomaly of mean square, we have 

If we set 

(Ae)^=(e-e)». 

d& 
A© = 

de 

A® will represent approximately the increase of @ which 

would produce an increase in the average value of the energy 

equal to its anomaly of mean square. Now these equations 

give 

(A@)’‘ = 
20^ dtp 

n de ’ 

which shows that we may diminish A @ indefinitely by increas¬ 

ing the quantity of the bath. 

Now our canonical ensemble consists of an infinity of micro- 

canonical ensembles, which differ only in consequence of the 

different values of the energy which is constant in each. If 

we consider separately the phases of the first body which 
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occur in the canonical ensemble of the whole system, these 

phases will form a canonical ensemble of the same modulus. 

This canonical ensemble of pliases of the first body will con¬ 

sist of parts which belong to the different microcanonical 

ensembles into which the canonical ensemble of the whole 

system is divided. 

Let us now imagine that the modulus of the principal ca¬ 

nonical ensemble is increased by 2 A©, and its average energy 

by 2Ae. The modulus of the canonical ensemble of the 

phases of the first body eonsidered separately will be increased 

by 2 A®. We may regard the infinity of microcanonical en¬ 

sembles into which we have divided the principal canonical 

ensemble as each having its energy increased by 2 A e. Let 

us see how the ensembles of phases of the first body con¬ 

tained in these microcanonical ensembles are affected. We 

may assume that they will all be affected in about the same 

way, as all the differences which come into account may be 

treated as small. Therefore, the canonical ensemble formed by 

taking them together will also be affected in the same way. 

But we know how this is affected. It is by the increase of 

its modulus by 2A@, a quantity which vanishes when the 

quantity of the bath is indefinitely increased. 

In the case of an infinite bath, therefore, the increase of the 

energy of one of the microcanonical ensembles by 2Ae, pro¬ 

duces a vanishing effect on the distribution in energy of the 

phases of the first body which it contains. But 2Ae is more 

than the average difference of energy between the micro- 

canonical ensembles. The distribution in energy of these 

phases is therefore the same in the different microcanonical 

ensembles, and must therefore be canonical, like that of the 

ensemble which they form when taken together.* 

* In order to appreciate the above reasoninf?, it should be understood that 

tbe differences of energy which occur in the canonical ensemble of phases of 

the first body are not here regarded as vanishing quantities. To fix one’s 

ideas, one may imagine that he has the fineness of perception to make those 

differences seem large. The difference between the part of these phases 

which belong to one microcanonical ensemble of the whole system and the 

part which belongs to another would still be imperceptible, when the quan¬ 

tity of the bath is sufficiently increased. 
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x\s a general theorem, the conclusion maybe expressed in 

the ^vords: — If a system of a great number of degrees of 

freedom is microcanonieally distributed in pliase, any very 

small part of it may be regarded as canonically distributed.* 

It would seem, therefore, that a canonical ensemble of 

phases is what best represents, with the precision necessary 

for exact mathematical reasoning, the notion of a body with 

a given temperature, if we conceive of the temperature as the 

state produced by such processes as we actually use in physics 

to produce a given temperature. Since the anomalies of the 

body increase with the quantity of the bath, we can only get 

rid of aU that is arbitrary in tlie ensemble of phases which is 

to represent the notion of a body of a given temperature by 

making the bath infinite, which brings us to the canonical 

distribution. 

A comparison of temperature and entropy with their ana¬ 

logues in statistical mechanics would be incomplete without a 

consideration of their differences with respect to units and 

zeros, and the numbers used for their numerical sp)ecificatlon. 

If we apply the notions of statistical mechanics to such bodies 

as we usually consider in thermodynamics, for which the 

kinetic energy is of the same order of magnitude as the unit 

of energy, but the number of degrees of freedom is enormous, 

the values of de/iilogFi and dejd^ will be of the same 

order of magnitude a.s 1/m, and the variable part of 'q, log V, 
and (f) will be of the same order of magnitude as n.f If these 

quantities, therefore, represent in any sense the notions of tem¬ 

perature and entropy, they wiU nevertheless not be measured 

in units of the usual order of magnitude, — a fact wdiich must 

be borne in mind in determining what magnitudes may be 

regarded as insensible to human observation. 

Now nothing prevents our supposing energy and time in 

our statistical formulae to be measured in such units as may 

* It is assumed — and without this assumption the theorem would haye 

no distinct meaning — that the part of the ensemble considered may be 

regarded as having separate energy. 

t See equations (124), (288), (289), and (314); also page 106. 
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be convenient for physical purposes. But when these units 

have been ciiosen, the numerical values of 0, de/dlogV, 
de/d(f>, log V, (j>y are entirely deteianiued,* and in order to 

compare them with temperature and entropy, the numerical 

values of which depend upon an arbitrary unit, we must mid- 

tiply all values of 0, dejdlogV, de;d<p by a constant (IQ, 
aird divide all values of y, log V, and <l> by the same constant. 

This constant is the same for all bodies, and depeirds only on 

the units of temperature and energy which we employ. P’or 

ordinary units it is of the same order of magnitude as the 

numbers of atoms in ordinary bodies. 

We are not able to determine the numerical value of K, 
as it depends on the number of molecules in the bodies with 

which we experiment. To fix our ideas, however, we may 

seek an expression for this value, based upon very probable 

assumptions, which will show how we would naturally pro¬ 

ceed to its evaluation, if our powers of observation were fine 

enough to take cognizance of individual molecules. 

If the unit of mass of a monatomic gas contains v atoms, 

and it may be treated as a system of 3 degrees of free¬ 

dom, which seems to be the case, we have for canonical 

distribution 

fp = f 0, 

d® ~ 
(491) 

If we write T for temperature, and for the specific heat of 

the gas for constant volume (or rather the limit toward 

which this specific heat tends, as rarefaction is indefinitely 

increased), we have 

dfp 

dT 
dv, (492) 

since we may regard the energy as entirely kinetic. We may 

set the €p of this equation equal to the ep of the preceding, 

* The unit of time only affects the last three quantities, and these only 

by an additive constant, which disappears (with the additive constant of 

entropy), when differences of entropy are compared with their statistical 

analogues. See page 19. 
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whore indeed the individual values of which the average is 

taken would appear to human observation as identical. This 
gives 

whence 

d® _ 2c, 
dT~l^’ 

_1 _ 2c, 
K~ 

(493) 

a value recognized by physicists as a constant independent of 

the kind of monatomic gas considered. 

We may also express the value of jK'in a somewkit different 

form, which corresponds to the indirect method by which 

physicists are accustomed to determine the quantity c„. The 

kinetic energy due to tlie motions of the centers of mass of 

the molecules of a mass of giis sufficiently expanded is easily 
shown to be equal to 

where p and v denote the pressure and volume. The average 

value of the same energy in a canonical ensemble of such 
a mass of gas is 

i@v, 

where p denotes the number of molecules in the gas. Equat¬ 
ing these values, we have 

pv = ®v, (494) 

_ 1 @ vv 
whence 

Now the laws of Boyle, Charles, and Avogadro may be ex¬ 
pressed by the equation 

pv = AvT, (496) 

where A is a constant depending only on the units in which 

energy and temperature are measured. 1 / A, therefore, might 

be called the constant of the law of Boyle, Charles, and 

Avogadro as expressed with reference to the true number of 
molecules in a gaseous body. 

Since such numbers are unknown to us, it is more conven¬ 

ient to express the law with reference to relative values. If 

we denote by M the so-called molecular weight of a gas, that 
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is, a number taken from a table of numbers prr)pnitional to 

the weights of various molecules and atoms, but having one 

of the values, perhaps the atomic weight of hydrogen, arbi¬ 

trarily made unity, the law of Hoyle, tliarles, and Avogadro 

may be written in the more practical form 

pv = A'T'^, (497) 

where A' is a constant and m the weight of gas considered. 

It is evident tliat 1 JT is equal to the product of the constant 

of the law in this form and the (true) weight of an atom of 

hydrogen, or such other atom or molecule as may be given 

the value unity in the table of molecular weights. 

In the following chapter we shall consider the necessary 

modifications in the theory of equilibrium, when the quantity 

of matter contained in a system is to be regarded as variable, 

or, if the system contains more than one kind of matter, 

when the quantities of the several kinds of matter in the 

system are to be regarded as independently variable. This 

will give us yet another set of variables in the statistical 

equation, corresponding to those of the amplified form of 

the thermodynamic equation. 



CHAPTER XV. 

SYSTEMS COMPOSED OF MOLECULES. 

The nature of material bodies is such that e.special intererr 

attaches to the dynamics of systems composed of a gre.L 

number of entirely similar particles, or, it may be, of a great 

number of particles of several kinds, all of each kind being 

entirely similar to each other. We shall therefore proceed to 

consider systems composed of such particles, wliether i]i great 

numbers or otherwise, and especially to consider the statistical 

equilibrium of ensembles of such systems. One of the varia¬ 

tions to be considered in regard to such systems is a variation 

in the numbers of the particles of the various kinds which it 

contains, and the question of statistical equilibrium between 

two ensembles of such systems relates in part to tlie tendencies 

of the various kinds of particles to pass from the one to the 
other. 

First of all, we must define precisely what is meant by 

statistical equilibrium of such an ensemble of systems. The 

essence of statistical equilibrium is the permanence of the 

number of systems which fall within any given limits with 

respect to phase. We have therefore to define how the term 

“ phase ” is to be understood in such cases. If two phases differ 

only in that certain entirely similar particles have changed 

places with one another, are they to be regarded as identical 

or different phases ? If the particles are regarded as indis¬ 

tinguishable, it seems in accordance with the spirit of the 
statistical method to regaixl the phases as identical. In fact, 

it might be urged that in such an ensemble of systems as we 

are considering no identity is possible between the particles 

of different systems except that of qualities, and if v particles 

of one system arc described as entirely similar to one another 

and to V of another system, nothing remains on which to base 
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the indentification of any particular particle of the first system 

with any particular particle of the second. And ihi.s would 

be true, if the ensemble of systems had a simultaneous 

objective existence. But it Imrdly applies to the creations 

of the imagination. In the case.s which we have been eoii- 

sidei’ing, and in those which we shall consider, it is not only 

possible to conceive of the motion of an ensemble of similar 

systems simply as possible cases of the motion of a single 

system, but it is actually in large measure for the sake of 

representing more clearly the possible cases of the motion of 

a single system that w'e use the conception of an ensemble 

of systems. The perfect similarity of several particles of a 

system will not in the least interfere with the identification 

of a particular particle in one case with a particular particle 

in another. The question is one to be decided in accordance 

with the requirements of practical convenience in the discus¬ 

sion of the problems with which we are engaged. 

Our present purpose will often require us to use the terms 

phase, density-in-phase, statistical equilihrium, and other con¬ 

nected terms on the supposition that phases are nat altered 

by the exchange of places between similar particles. Some 

of the most important questions with which we are concerned 

have reference to phases thus defined. We shall call them 

phases determined by generic definitions, or briefly, generic 

phases. But we shall also be obliged to discu.ss phases de¬ 

fined by the narrower definition (so that exchange of position 

between similar particles is regarded as changing the phase), 

which will be called phases determined by specific definitions, 

or briefly, specific phases. For the analytical description of 

a specific phase is more simple than that of a generic phase. 

And it is a more simple matter to make a multiple integral 

extend over all possible specific phases than to make one extend 

without repetition over all possible generic phases. 

It is evident that if v,, .. . v^, are the numbers of the dif¬ 

ferent kinds of molecules in any system, the number of specific 

phases embraced in one generic phase is represented by the 

continued product [vj [zq . . . [iq, and the coefficient of probabil- 
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ity of a generic phase is the sum of the prrobability-coefficients 

of tlic specific phases which it represents. When these are 

equal among themselves, the probability-coefficient of the gen¬ 

eric phase is equal to tliat of tlie specific phase multiplied by 

. . .\v^. It is also evident that statistical equilibrium 

may subsist with respect to generic phases without statistical 

equilibrium with respect to specific phases, but not vice versa. 

Similar questions arise where one particle is capable of 

several equivalent positions. Does the change from one of 

these positions to another change the phase ? It would be 

most natural and logical to make it affect the specific phase, 

but not the generic. The number of specific phases contained 

in a generic phase would then be (iq where 

K^, . . . denote the numbers of equivalent positions belong¬ 

ing to the several kinds of particles. The ease in which a tc is 

infinite would then require especial attention. It does not 

appear tliat the resulting complications in the formulae would 

be compensated by any real advantage. The reason of tins is 

that in problems of real interest equivalent positions of a 

particle will always be equally probable. In this respect, 

equivalent positions of the same particle are entirely unlike 

the [^different ways in which v particles may be distributed 

in V different positions. Let it therefore be understood that 

in spite of the physical equivalence of different positions of 

the same particle they are to be considered as constituting a 

difference of generic phase as well as of specific. The number 

of specific phases contained in a generic phase is therefore 

always given by the product • • • hv 

Instead of considering, as in the preceding chapters, en¬ 

sembles of systems differing only in phase, we shall now 

suppose that the systems constituting an ensemble are com¬ 

posed of particles of various kinds, and that they differ not 

only in phase but also in the numbers of these particles which 

they contain. The external coSrdinates of all the systems in 

the ensemble are supposed, as heretofore, to have the same 

value, and when they vary, to vary together. For distinction, 

we may call such an ensemble a grand ensemble, and one in 
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which the systems differ orJy in phase a petit cnae/nilh:. A 

gKiiid ensemble is therefore composed of a multitude of petit 

ensembles. The ensembles ■which we have hitherto discussed 

are petit ensembles. 

Let i/j, . . . etc., denote the numbers of the different 

kinds of particles in a system, e its energy, and ep, . . . q,,, 

p.y, . ■ ■ fn ds coordinates and momenta. If the particles are of 

the nature of material points, the number of coordinates (ji) 

of the system ■will be equal to 3 . . . +82^4. But if the parti¬ 

cles are less simple in their nature, if they are to be treated 

as rigid solids, the orientation of which must be regarded, or 

if they consist each of several atoms, so as to have more than 

three degrees of freedom, the number of coordinates of the 

system will be equal to the sum of Pi, etc., multiplied 

each by the number of degrees of freedom of the kind of 

particle to which it relates. 

Let us consider an ensemble in which the number of 

systems having Wj, . . . particles of the several kinds, and 

having values of their coordinates and momenta lying between 

the limits qy and + dq^., py and py + dpy, etc., is represented 

by the expression 

n+p-ivi.. ■ 

JVe ® 
-^ djH ...dq„, (498) 

where JV, O, 0, , . , . are constants, N denoting the totiil 

number of systems in the ensemble. The expression 

fl+Miyi ■ ■ • 

Ne ® (499) 

b-- -h 

evidently represents the density-in-phase of the ensemble 

within the limits described, that is, for a phase specifically 

defined. The expression 

n+MiJ-i... 

s 

[yi • • • ly» 

e (500) 
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is therefore the probability-coefficient for a phase specifically 

defined. This has evidently the same value for all the 

. . . [jij phases obtained by interchanging the phases of 

particles of the same kind. The probability-coefficient for a 

generic phase wiU be ji'i .. . [f/, times as great, viz., 

1 ® . (.101) 

We shall say that such an ensemble as ha.s been described 

is canonically distributed^ and shall call the constant 0 its 

modulus. It is evidently what we have called a grand ensem¬ 

ble. The petit ensembles of which it is composed are 

canonically distributed, according to the definitions of Chapter 

IV, since the expression 

(502) 

is constant for each petit ensemble. The grand ensemble, 

therefore, is in statistical equilibrium with respect to .specific 

phases. 

If an ensemble, whether grand or petit, is identical so far 

as generic phases are concerned with one canonically distrilj- 

uted, we shah say that its distribution is canonical with 

respect to generic phases. Such an ensemble is evidently in 

statistical equilibrium with respect to generic phases, although 

it may not be so with respect to specific phases. 

If we write H for the index of probability of a generic phase 

in a grand ensemble, we have for the case of canonical 

distribution 

H = 
O + /Xi V1 . . ■ -f i-a — e 

® 
(503) 

It will be observed that the H is a linear function of e and 

v^, ... Vh'i also that whenever the index of probability of 

generic phases in a grand ensemble is a linear function of 

e, i/j, . . . vti, the ensemble is canonically distributed with 

respect to generic phases. 
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The conatant 12 we may regard as determined by the 

equation 

N-- 
bii • • • b. 

or 

0 

--. 
j— w- phijuiea 

■dpi...dq„, (504) 

e ^ djpy . . , (505) 

where the multiple sum indicated by . . . 2„, includes all 

terms obtained by giving to each of the symbols vx ... all 

integral values from zero upward, and the multiple mtegral 

(which is to be evaluated separately for each term of the 

multiple sum) is to be extended over all the (specific) phases 

of the system having the specified numbers of particles of the 

various kinds. The multiple integral in the last equation is 

what we have represented by e ®. See equation (92). Wo 

may therefore write 

e 

Mi"! ■ ■ • V.h'’K-'^ 

(506) 

It should be observed that the summation includes a term 

in which all the symbols i/j .. . vj have the value zero. We 

must therefore recognize in a certain sense a system consisting 

of no particles, which, although a barren subject of study in 

itself, cannot wed be excluded as a particular case of a system 

of a variable number of particles. In this case e is constant, 

and there are no integrations to be performed. We have 

therefore* 

_$ 
e ® = e ®, i, e., tj/ = e. 

* This conclusion may appear a little strained. The original definition 

of ifr may not be regarded as fairly applying to systems of no degrees of 

freedom. We may therefore prefer to regard these equations as defining 

in this case. 
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The value of 6^ is of course zero in tliis case. But the 

value of contains an arbitrary constant, which is generally 

determinefl by considerations of convenience, so that and e 

do not necessarily vanish with ,. . . 

Unles.s —11 has a finite value, our foimulae become illusory. 

We have already, in considering petit ensembles canonically 

distributed, found it necessary to exclude cases in which — 

has not a finite value.* The same exclusion would here 

make — finite for any finite values of . . . Vf^. This does 

not neceSisarily make a multiple series of the form (506) finite. 

We may observe, however, that if for all values oi 

— < Co + Cl Vi, ■ ■ ■ + V/,, 

where Cq, . . . are constants or functions of 

n 
0 

0 <2 ... 2 ^ 

0 

= y/i l2i- • • K 

- 

^ ^ Mi+ci 

-I 1“ 
%» B ^ri ■ 

fl Co 

L ® ^ i e 
e Se e 

L e., 

1‘1+Cl 

© =" © ^ 

Mi+c* 

.. + e ® . 

(507) 

(508) 

The value of — fl will therefore be finite, when the condition 

(507) is satisfied. If therefore we assume that — 11 is finite, 

we do not appear to exclude any cases which are analogous to 

those of nature.t 

The interest of the ensemble which has been described lies 

in the fact that it may be in statistical equilbrium, both in 

• See Chapter IV, page 35. 

t It the external coordinates determine a certain volume within which the 

system is confined, the contrary of (607) would imply that we could obtain 

an infinite amount of work by crowding an infinite quantity of matter into a 

finite volume. 

13 
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respect to excliange of energy and exchange of particles, with 

otlier grand ensembles canonically distributed and having the 

same values of © and of the coefficients etc., when the 

circumstances are such that exchange of energy and of 

particles are possible, and when equilibrium would not sub¬ 

sist, were it not for equal values of these constants in the two 

ensembles. 

With respect to the exchange of energy, the case is exactly 

the same as that of the petit ensembles considered in Chapter 

IV, and needs no especial discussion. The question of ex¬ 

change of particles is to a certain extent analogous, and may 

be treated in a somewhat similar manner. Let us suppose 

that we have two grand ensembles canonically distributed 

with respect to specific phases, with the same value of the 

modulus and of the coefficients and let us consider 

the ensemble of all the systems obtained by combining each 

system of the first ensemble with each of the second. 

The probability-coefficient of a generic phase in the first 

ensemble may be expressed by 

(509) 

The probability-coefficient of a specific phase wiU. then be 

expressed by 

n'+iiivi'... 

e 8 

(510) 

since each generic phase comprises \^. . .\^ specific phases. 

In the second ensemble the probability-coefficients of the 

generic and specific phases will be 

e ® , (511) 

and (512) 
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The probability-coefficient of a generic phase in tlie thin.1 

en.semble, which consists of systems obtained by regarding 

each system of the first ensemble combined with each of the 

second as funning a system, will be the product of the proba¬ 

bility-coefficients of the generic phases of the systems com¬ 

bined, and will therefore be represented by the foi-mula 

n"'+niPi"... 

e ® (513) 

where SI’" = SI' + SI", e'" = e' + e", vi'" — v,’ -t- v^’, etc. It 

will be observed that v"', etc., represent the numbers of 

particles of the various kinds in the third ensemble, and c'" 

its energy; also that SI’" is a constant. The third ensemble 

i.s therefore canonically distributed with respect to generic 

phases. 

If all the systems in the same generic phase in the tliird 

ensemble were equably distributed among the \vi’'’. . . [ vspe¬ 

cific phases which are comprised in the generic pliase, the prob¬ 

ability-coefficient of a specific phase would be 

e'" 

(514) 

In fact, however, the probability-coefficient of any specific 

phase which occurs in the third ensemble is 

bv. (515) 

which we get by multiplying the probability-coefficients of 

specific phases in the first and second ensembles. The differ¬ 

ence between the formulae (514) and (515) is due to the fact 

that the generic phases to which (513) relates include not 

only the specific phases occurring in the tlrird ensemble and 

having the probability-coefficient (515), but also all the 

specific phases obtained from these by interchange of similar 

particles between two combined systems. Of these the proba- 
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bility-coefficicut is evidently zero, as they do not occur in the 

ensemble. 
Now this third en.semble is in statistical equilibrium, with 

respect both to specihe and generic phases, since the ensembles 

from which it is formed are so. This statistical equihbrium 

is not dependent on the equality of the modulus and the co-effi¬ 

cients , . . . jtxj in the first and second ensembles. It depends 

only on the fact that the two original ensembles were separ¬ 

ately in statistical equihbrium, and that there is no interaction 

between them, the combining of the two ensembles to form a 

third being purely nominal, and involving no physical connec¬ 

tion. This independence of the systems, determined physically 

by forces which prevent particles from passing from one sys¬ 

tem to the other, or coming within range of each other’s action, 

is represented mathematically by infinite values of the energy 

for particles in a space dividing the systems. Such a space 

may be called a diaphragm. 

If we now suppose that, when we combine the systems of 

the two original ensembles, the forces are so modified tliat the 

energy is nc longer infinite for particles in aU the space form¬ 

ing the diaphragm, but is diminished in a part of this space, 

so that it is possible for particles to pass from one system 

to the other, this will involve a change in the function e'" 

which represents the energy of the combined systems, and the 

equation e'" = e’ + e" will no longer hold. Now if the co¬ 

efficient of probability in the third ensemble were represented 

by (513) with this new function e'", we should have statistical 

equilibrium, with respect to generic phases, although not to 

specific. But this need involve only a trifling change in the 

distribution of the third ensemble,* a change represented by 

the addition of comparatively few systems in which the trans¬ 

ference of particles is taking place to the immense number 

* It will be observed that, so far as the distribution is concerned^ very 

large and infinite values of e (for certain phases) amount to nearly the same 

thing, — one representing the total and the other the nearly total exclusion 

of the phases in question. An infinite change, therefore, in the value of e 

(for certain phases) may represent a vanishing change in the distribution. 
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obtained by combining the two original ensembles. I’lie 

difference between the ensemble which would be in statistic-al 

equilibrium, and that obtained by oombining the two original 

ensembles may be diminished without limit, while it is still 

possible for particles to pass from one system to another. In 

this sense we may say that the ensemble formed by combining 

the two given ensembles may still be regarded as in a state of 

(approximate) statistical equilibrium with respect to generic 

phases, when it has been made possible for particles to jjass 

between the systems combined, and when statistical equilibrium 

for specific phases has therefore entirely ceased to exist, and 

when the equilibrium for generic phases would also have 

entirely ceased to exist, if the given ensembles had not been 

canonically distributed, with respect to generic phases, with 

the same value.s of 0 and /Xj, . . . /x,,. 

It is evident also that considerations of this kind wiU apply 

separately to the several kinds of particles. We may diminish 

the energy in the space forming the diaphragm for one kind of 

particle and not for another. This is the mathematical ex¬ 

pression for a “ semipermeable” diaphragm. The condition 

necessary for statistical equilibrium where the diaphragm is 

permeable only to particles to which the suffix ( )i relates 

will be fulfilled when /xj and 0 have the same values in the 

two ensembles, although the other coefficients /Xj, etc., may be 

different. 

This important property of grand ensembles with canonical 

distribution will supply the motive for a more particular ex¬ 

amination of the nature of such ensembles, and especially of 

the comparative numbers of systems in the several petit en¬ 

sembles which make up a grand ensemble, and of the average 

values in the grand ensemble of some of the most important 

quantities, and of the average squares of the deviations from 

these average values. 

The probability that a system taken at random from a 

grand ensemble canonically distributed will have exactly 

j/j, . . . 7//, particles of the various kinds is expressed by the 

multiple integral 
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.04 -f 

phases 
LUi ■ ■ ■ ,jii 

(SIC) 

n-i Hiy,. .. <1/ 

or ^ . (S17) 
In- ■ •! rs 

This may be called die probability of the petit ensemble 

(ill,. . . V/,). The sum of all such probabilities is evidently 

unity. That is, 

••b 

1> (518) 

which agrees with (506). 
The average value in the grand ensemble of any quantity 

u, is given by the formula 

u — .. . dg’n- (519) 

If M is a function of z»j, . . . alone, t. e., if it has the same 

value in all systems of any same petit ensemble, the formula 

reduces to 
ft+Miri • ■ ■ +Ma''1—1' 

U — X, (520) 

Again, if we write ^ grand and M|petit to distinguish averages in 
the grand and petit ensembles, wc shall have 

grand * 

O+ZllKl . ■ . 

(621) 

In this chapter, in which we are treating of grand en¬ 

sembles, M wiU always denote the average for a grand en¬ 

semble. In the preceding chapters, u has always denoted 

the average for a petit ensemble. 
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Equation (505), which we repeat in a slightly different 

form, viz., 

fl 
"e. 2.^. .. S.,J.. . 

phases 
Ija • • • ly* 

■ dpi... d<i„, (522) 

shows that XI is a function of © and /Zj, also of the 

external coordinates a^, a.^^, etc., which are involved implicitly 

in e. If we differentiate the equation regarding all these 

quantities as variable, we have 

all 

phases 

e 

+ etc. 

|yi . . . [^ 

dpi .■■d2„ 

- dpi... dq^„ 

ViC 

phases 
[n-.-b 

— etc. 

all ^ ^Q- 

2.J... 2.*J...J — • • ■ '^2-^ 

phases 

(523) 

n 

If we multiply this equation by e”, and set as usual A^, 

etc., for — de/daj^, — dejda^, etc., we get in virtue of the law 
expressed by equation (519), 

dCl O d® , __ 
— + pd® = — • • • + — e) 

+ -p n + vs + etc. 

da, . da, , (524) 
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that is, 

dil =: ^ ^ d0 - 5n C//X1 - 2 da^,, (626) 

Since equation (503) gives 

^ — H, (526) 

the preceding equation may be written 

dO = Ud@ — 2,vidfii — 2,Jidai. (527) 

Again, equation (526) gives 

ciQ “}• 2 dv\ "S vi dfjLi — de — @ did -p hi d&, (528) 

Eliminating dO, from these equations, we get 

& = -®t7H; + 2/xirfn - 2i[idai. (529) 

If we set = € + @ H, (530) 

d^ — de + ® dH + H d0, (531) 

we have d'^ — H d& + 2 /k-i dv^ — 2 jJi doi. (532) 

The corresponding thermodynamic equations are 

<?£ = Tdij + 2/iidmi — 2-di<7ai, (533) 

xj/ — € — Trj, (S34) 

dtp ~ KjdT -p fjt-i dTitri 2-di dcit. • (o35) 

These are derived from the thermodynamic equations (114) 

and (117) by the addition of the terms necessary to take ac¬ 

count of variation in the quantities (m^, wjg, etc.) of the 

several substances of which a body is composed. The cor¬ 

respondence of the equations is most perfect when the com¬ 

ponent substances are measured in such units that »?j, 

etc., are proportional to the numbers of the different binds 

of molecules or atoms. The quantities /txj, etc., in these 

thermodynamic equations may be defined as differential coeffi¬ 

cients by either of the equations in which they occur.* 

♦ Compare Transactions Connecticut Academy, Vol. Ill, pages 116 ff. 
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If we compare the statistical equations (529) and (632) 

with (114) and (112), which are given in OJiapter IV, and 

discussed in Chapter XIV, as analogues of thermody¬ 

namic equations, we find considerable difference. Beside the 

terms corresponding to the additional terms in the thermo¬ 

dynamic equations of this chapter, and beside the fact that 

the averages are taken in a grand ensemble in one case 

and in a petit in the other, the analogues of entropy, H 

and are quite different in definition and value. We shall 

return to this point after w^e have determined the order 

of magnitude of the usual anomalies of v.^, ... v^. 

If we differentiate equation (518) with respect to /ii, and 

multiply by @, we get 

whence = — v^, which agrees with (527). Differen¬ 

tiating again with respect to ,uj, and to /ig, and setting 

do, _ - dQ _ 

we get 
Q+A«i»'i ■ ■ ■ 

0 

+ @ ; lyi... bi ■ (637) 

/ d^a 

* \d/j^dij,2 
-h 

(n —n) (rg —rg) 

■ [n 
- = 0. (638) 

The first members of these equations represent the average 

values of the quantities in the principal parentheses. We 

have therefore 

(n — viY = Vl 
- 2 
Vi : 

d'^a 

dfii^ 

dvi 
(639) 

(vi— ri) {vi — ra) = vi Va — nra = — ® 
dni dfj.^ d^2 dfji^ 

(640) 
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From equation (539) we may get an idea of the order of 

magnitude of the divergences of vi from its average value 

in the ensemble, when that average value is great. The 

equation may be written 

(i-i — i-i)^ 0 dvi 
(541) 

The second member of this equation will in general be small 

when is great. Large values are not necessarily excluded, 

but they must be confined within very small limits vsith re¬ 

spect to /i. For if 

(ri — vi)^ 
- 2 ~ 

(542) 

for all values of /nj between the limits and /Ltj", we shall 

have between the same limits 

and therefore 

(543) 

(544) 

The difference f^i" — /aj' is therefore numerically a very small 

quantity. To form an idea of the importance of such a 

difference, we should observe that in formula (498) fii is 

multiplied by v.^ and the product subtracted from the energy. 

A very small difference in the value of /aj may therefore be im¬ 

portant. But since v @ is always less than the kinetic energy 

of the system, our formula shows that fij" — even when 

multiplied by p^' or p^", may stUl be regarded as an insensible 

quantify. 

We can now perceive the leading chai-acteristics with re¬ 

spect to properties sensible to human faculties of such an en¬ 

semble as we are considering (a grand ensemble canonically 

distributed), when the average numbers of particles of the vari¬ 

ous kinds are of the same order of magnitude as the number 

of molecules in the bodies which are the subject of physical 
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experimeat. Althoogh the ensemble contains systems having 

the widest possible variations in respect to tlie numbers o£ 

the particles which they contain, these variations are practi¬ 

cally contained within such narrow limits as to be insensible, 

except for particular values of the constants of the ensemble. 

This exception corresponds precisely to the case of nature, 

when certain thermodynamic quantities con-esponding to (t), 

fii, /ij, etc., which in general determine the separate densities 

of various components of a body, have certain values which 

make these densities indeterminate, in other words, when the 

conditions are such as determine coexistent phases of matter. 

Except in the case of these particular values, the grand en¬ 

semble would not differ to human faculties of perception from 

a petit ensemble, viz., any one of the petit ensembles which it 

contains in which vi, etc., do not sensibly differ from their 
average values. 

Let us now compare the quantities H and i}, the average 

values of which (in a grand and a petit ensemble respectively) 

we have seen to correspond to entropy. Since 

and 

H = 
fJ -h ri . . . -h r* — 6 

1) = tZLl 
® ’ 

n -f- 
±1 — ^ = - • + i^h^h — >1' 

© 
(545) 

A part of this difference is due to the fact that H relates to 

generic phases and tj to specific. If we write i7ge„ for the 

index of probability for generic phases in a petit ensemble, 

we have 
Vein = •>? + log [n ... [i^, (646) 

H-,..H-,g„ + log[n...b., (547) 

hi Vein 
— >1' 

© 
— log |yi . . . |i'A . (548) 

This is the logarithm of the probability of the petit en¬ 

semble (vi > • ■ J'/,).* If we set 

* See formula (517). 
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'Agiia ^ _ 
0 — ^gea? (549) 

which corresponds to the equation 

l/- — £ 
0 

(650) 

we have lAseu = </> + ® log !ia • ■ • [is. 

and H — 
n -f /iin . . . -f- — i/'ge, 

’7gen — 0 (651) 

This wdl have a , maximum when * 

dv\ 
— fXly J —fiii etc. 

clv^ 
(552) 

DistinguisMng values corresponding to this maximum by- 

accents, we have approximately, when ... are of the 

same order of magnitude as the numbers of molecules in ordi¬ 

nary bodies, 

rr n + fllVi . . . + — iffgen 

— 0 

_ Q + (•■in • ■ • + PhVh — 4'eon 

@ 

dv^ J 2 ® \dvi dv2 J ® dit/,^ ) 2 ® ’ 
(553) 

(Al-i)^ rY Ay, Ay. /V 

20 K.dyidf.^/ 0 \dvn^/ 2 0 

(554) 

where C = 
U + flin' . . . + 

0 
(555) 

and Avi = vi — vi', A1-2 = rj — V2', etc. (656) 

This is the probability of the system (vj^ ... vi,). The prob- 

abilty that the values of I'j, . . . lie within given limits is 

given by the multiple integral 

* Strictly speaking, is not determined as function of except 

for integral values of these variables. Yet we may suppose it to be deter¬ 
mined as a continuous function by any suitable process of interpolation. 
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/•/ 
,0 \ ) 20 Xdn^dy.^) 0 ' ' \ ) 20 0 ■ ■ v *v® J 20 . 

(557) 

This shows that the distribution of the grand ensemble with 

respect to the values of . . . v,, follows the “ law of errors ” 

when Vj', . . ■ V/,’ arc very great. The value of this integral 

for the hmits ± oo should be unity. This gives 

.(27r&)^ _ 

i 
= 1, 

or 

where 

i f7=:ilogZ)-^log(2,r©), 

\(^y (d^^y. 
I \ dvi^ J \dyidv2) \dvidv^) 

f dVeeaV f ^fVeeaVl 
\ J \dv2 dv^) 

that is, 

\dvij \dvi) 

H — 'Vgen (7: : JlogD —^log (2ir©), 

(558) 

(559) 

(660) 

(561) 

Now, by (553), we have for the first approximation 

(562) 

and if we divide by the constant K,* to reduce these quanti¬ 

ties to the usual unit of entropy, 

H —^7gcn log D — A log (27r®) 

K 2K 
(663) 

♦ See page 184-186. 
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This is evidently a negligible quantity, since K is of the same 

order of magnitude as the number of molecules in ordinary 

bodies. It is to be observed that here the average in 

the grand ensemble, whereas the quantity which we wish to 

compare with H is the average in a petit ensemble. But as we 

have seen that in the case considered the grand ensemble would 

appear to human observation as a petit ensemble, this dis¬ 

tinction may be neglected. 

The differences therefore, in the case considered, between the 

quantities which may be represented by the notations * 

> ’is'” Utlt 

are not sensible to hmnan faculties. The difference 

and is therefore constant, so long as the numbers ... 
are constant. For constant values of these numbers, therefore, 

it is immaterial 'whetlier we use the average of or of rj for 

entropy, since this only affects the arbitrary constant of in¬ 

tegration which is added to entropy. But when the numbers 

i/j, . . . are varied, it is no longer possible to use the index 

for specific phases. For the principle that the entropy of any 

body has an arbitrary additive constant is subject to limi¬ 

tation, when different quantities of the same substance are 

concerned. In this case, the constant being determined for 

one quantity of a substance, is thereby determined for all 

quantities of the same substance. 
To fix our ideas, let us suppose that we have two identical 

fluid masses in contiguous chambers. The entropy of the 

whole is equal to the sum of the entropies of the parts, and 

double that of one part. Suppose a valve is now opened, 

making a communication between the chambers. We do not 

regard this as making any change in the entropy, although 

the masses of gas or liqxiid diffuse into one another, and al¬ 

though the same process of diffusion would increase the 

*^In this paragraph, for greater distinctness, ’Ispctlpj,,, have 

heen written for the quantities which elsewhere are denoted by II and 
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entropy, if the masses of fluid were different. It is evident, 

therefore, that it is equilibrium -with respect to generic phases, 

and not with respect to specific, with which we have t(j do in 

the evaluation of entropy, and therefore, that we must use 

the average of H or of and not that of t/, as the equiva¬ 

lent of entropy, except in the thermodynamics of bodies in 

which the number of molecules of the various kinds is 

constant. 


